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1Department of Physics, Chemistry and Biology, Linköping University
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Linköping University
Department of Physics, Chemistry and Biology
SE-581 83 Linköping
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Abstract

Ecological processes in food webs depend on species interactions. By identifying1

broad-scaled interaction patterns, important information on species ecological roles may2

be revealed. Here, we use the group model to examine how spatial resolution and3

proximity influence the group structure. We examine a dataset from the Barents Sea,4

with species occurrences for both the whole region and 25 subregions. Specifically, we5

test how the group structure in the networks differ comparing i) the regional metaweb to6

subregions and ii) subregion to subregion. We find that more than half the species in the7

metaweb change groups when compared to subregions. Between subregions, networks8

with similar group structure are usually spatially related. Interestingly, although species9

overlap is important for similarity in group structure, there are notable exceptions. Our10

results highlight that species ecological roles differ depending on fine-scaled differences in11

patterns of interactions, and that local network characteristics are important to consider.12

Introduction13

A long-standing goal in ecological research is to identify which species, groups of species,14

or other structures are important for delivering and maintaining functionality in an15

ecosystem. Ecological networks such as food webs are commonly used to describe the16

structural patterns of species and their interactions within ecosystems (Newman 2003,17

Pascual & Dunne 2006). This approach is useful for understanding both broad-scale18

properties as well as properties of meso-scale structures and individual nodes in these19

networks (Allesina et al. 2008, Ings et al. 2009). The distribution of species interactions20

further affects species extinctions (Dunne et al. 2002, Eklöf & Ebenman 2006), stability21

(Allesina & Tang 2012), and functionality (Schindler 1990, Petchey & Gaston 2002).22

In the concept of the Eltonian niche, functional roles of species are defined by their23

interactions with other species (Elton & Elton 1927, Chase & Leibold 2003).24
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Accordingly, species with different sets of interaction partners possess different25

functional roles in the ecosystem. This view is closely related to the concept of trophic26

species used in early food web analyses (Dunne 2006), where species are merged into one27

trophic species if they share the same sets of prey and predators. The group model28

(Allesina & Pascual 2009) uses a relaxed version of the trophic species concept by29

organizing species into ecologically equivalent groups based on their patterns of30

interactions; species are grouped if they are prone to eat and be eaten by the same31

groups of species that in turn are prone to be eaten by the same set of species. The32

group model is equivalent to the stochastic block model used for community detection in33

network science. This recursive relationship implies that species which are distant from34

each other in the network still affect each other’s group memberships (Krause et al.35

2003, Allesina & Pascual 2009, Schaub et al. 2016). Critically, species belonging to the36

same group have corresponding roles in the ecological network, and are thus also likely37

to share similar ecological functionality. The group model has indeed shown to produce38

groups of species with relevant ecological interpretations, such as trophic guilds and39

habitat patterns (Baskerville et al. 2011, Eklöf et al. 2012, Sander et al. 2015).40

Reliable interpretations of structural patterns in ecological communities are however41

dependent on how data for ecological networks is obtained. Food web data is often42

collected over long time periods and large geographical areas in order to capture the43

majority of species or trophic interactions (Dunne 2006, Wood et al. 2015). The data is44

often presented as a metaweb, including all interactions observed over the whole area45

and time frame. This is certainly a valuable approach when the aim is to get an46

overview of the diversity of species and interactions in a region. However, if several areas47

of different types (e.g. coasts and open sea in a marine system) are aggregated, this may48

give an incorrect picture of the ecological network and its characteristics (Poisot et al.49

2012). In particular, all species may not be present in all local networks. Also, one may50

expect that even if a species does exist in both the coastal and open sea habitats, its51

interactions may differ depending on what other species are present in the respective52
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areas, differences in species traits between areas, etc. (Poisot et al. 2012, Bartley et al.53

2019). These differences can have important implications for both our general54

understanding of species functional roles in ecological networks, and also for local55

stability and robustness (McCann et al. 2005, Landi et al. 2018). When merging such56

differences into a metaweb, and potentially generating combinations of species and57

interactions that do not actually co-occur, the utility and reasoning based on such58

structures may be inaccurate or misleading.59

Here, we evaluate whether the partitioning of species into ecologically equivalent groups60

differs i) between a meta (regional) network and local networks (subregions), and ii)61

between different subregions. In particular, we want to understand if certain groups of62

species and certain species are more variable in their group membership. We use a63

dataset from Barents Sea (Planque et al. 2014, Kortsch et al. 2018b), consisting of one64

meta network and several local networks from subregions describing the species present65

and their feeding interactions. The group model (Allesina & Pascual 2009) is used to66

identify the group structures of the different networks. The differences of the group67

structures are then compared using the Jaccard index of dissimilarity. Further, we68

analyse if certain species are more or less prone to change group membership. We show69

that the group structure in ecological communities is indeed affected by both spatial70

resolution and spatial location. Additionally, although the grouping of species clearly71

depends on the species composition, the group model reveals additional structural72

patterns which likely have implications for the functioning of ecological communities.73

Methods74

Dataset75

We used a food web dataset describing the Barents Sea (Planque et al. 2014, Kortsch76

et al. 2018a). The Barents Sea a shelf sea with a heterogeneous environment bordering77
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the Atlantic Ocean, with the dissipating Gulf Steam in the west and the Arctic Ocean to78

the north-east (Fossheim et al. 2015). The food web data consists of a regional metaweb79

and 25 local food webs in subregions. The subregions are delimited by polygons whose80

boundaries are defined by the topography, and enclose areas which are relatively81

homogeneous with respect to hydrography and bathymetry (Hansen et al. 2016, Kortsch82

et al. 2018b). The metaweb includes 233 species and 2220 feeding interaction, with83

species ranging from avian and mammalian predators to primary producers (Planque84

et al. 2014, Kortsch et al. 2018b). The subregions include separate species occurrences85

with 115–178 species and 679–1771 interactions. We created the subregion food webs by86

filtering the metaweb to retain only those species present in the respective subregions87

and all interactions between them. A pairwise feeding interaction between two species in88

a subregion was assumed to occur if the species had been identified as interacting in the89

metaweb.90

We made small modifications to the original dataset to ensure that all species that were91

not primary producers were still connected to food resources; the fish genus Sebastes92

spp. lacked prey species in 14 of the subregions. To address this problem, we added the93

complete set of interactions from three specific species from the same genus, namely S.94

marinus, S. mentella and S. viviparus. As Sebastes spp. is already an aggregate of95

multiple species, this likely reduced the impact of our modification to a slight96

over-representation of the genus.97

Group model98

In order to evaluate the “best” partitioning of the species into structurally functional99

groups, we used the group model (Allesina & Pascual 2009, Sander et al. 2015). The100

model provides a likelihood-based framework to calculate how well a specific101

partitioning of species into groups fits an empirical network structure. Groupings with a102

high likelihood have groups of species which acts in a similar way, that is, species within103
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a group tend to eat and be eaten by the same other groups (Allesina & Pascual 2009).104

We chose the group model due to its strong ecological reasoning in addition to its105

recognized performance (Baskerville et al. 2011, Yan et al. 2014, Sander et al. 2015).106

The group model uses a likelihood-based approach to find an optimal grouping. A107

network (food web) A has S nodes (species) and L directed links (feeding interactions)108

between the nodes. These relationships can be described with an adjacency matrix,109

where Aij = 1 means that i resource is eaten by consumer j. Based on the knowledge110

from the empirical web, there is a probability P to randomly create the same network111

when using the same number of nodes and probability p of links between the nodes:112

P (A(S, L)|p) = pL(1− p)S
2−L (1)

The group model expands this by instead looking the probability of randomly creating a113

network A, where the nodes in group i have the same probabilities pij to connect to114

nodes affiliated to the different groups j, for k number of groups.115

P (A(S, L)|~p) =
k∏

i=1

k∏
j=1

pL
ij

ij (1− pij)
SiSj−Lij (2)

where ~p is a vector of probabilities for links between all combinations of groups. By116

testing different sets of groups, the aim is to find the partitioning with the highest117

probability of reproducing an empirical network.118

The different combinations of groups differ in their number of parameters. Therefore, we119

cannot directly compare the likelihoods, but have to use some type of model selection to120

balance the goodness of fit with model complexity. Model selection can here be121

performed by calculating the Bayes factor (Eklöf et al. 2012, Sander et al. 2015), or by122

choosing the partition with the highest marginal likelihood.123

P (A(G)|~p) =
k∏

i=1

k∏
j=1

Lij!(SiSj − Lij)!

(1 + Lij)(1 + SiSj)
(3)
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With increasing numbers of species in the networks, the possible combinations of groups124

quickly become technically overwhelming. Hence, we compared marginal likelihoods125

while searching for better groupings instead of calculating all possible groupings.126

Following Sander et al. (2015), we searched for the partition of species into groups that127

maximizes the marginal likelihood by using Metropolis-Coupled Markov Chain Monte128

Carlo (MC3) with a Gibbs sampler. For both the metaweb and each subregion, the129

algorithm was executed 10 times, each with a random seed, 300,000 MCMC steps and130

20 MCMC chains. For each network, if multiple different groupings were produced, the131

grouping with the highest marginal likelihood was selected.132

Similarity between groups133

We were interested in how the partitioning of the species into groups changed between134

the metaweb and the subregions, and between the subregions. This would give an135

insight in whether, and how, groups of species as well as specific species changed roles136

depending on resolution and location. To track both how the overall group structures137

changed and also whether certain species or taxa were more prone to changing groups,138

we used two approaches.139

Jaccard index of dissimilarity for comparison of partition similarity140

To track how the overall group structure changed between networks, we used “best141

match” comparisons with the Jaccard index of dissimilarity which, for each group in a142

network, searched for the most similar match in a compared network. The “best”143

grouping, or community, in web A was defined as CA. We analysed to what extent each144

group k in CA resembled any group l in CB. The most similar group was defined as the145

group in CB where the most species from group CA
k were still grouped together. We then146

divided the number of species in the most similar group by the total number of unique147

species in groups k and l from both webs. After doing this for all groups n in web A, we148
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then calculated the mean dissimilarity:149

J(CA, CB) =
1

n

n∑
k=1

min
l

(
1− |C

A
k ∩ CB

l |
|CA

k ∪ CB
l |

)
(4)

The dissimilarity index takes the value of 0 when communities A and B are identical,150

and approaches 1 as they become increasingly dissimilar. The Jaccard index risks being151

affected by differences in the number of groups between compared networks, though152

these effects were limited in our case (see Fig. S1 in Supporting Information).153

Additionally, the index differs depending on the direction of the comparison (network154

A→ B or network B → A). To normalise these effects, we measured the dissimilarity155

both way for each network pair and calculated their average:156

J(CA, CB) =
J(CA, CB) + J(CB, CA)

2
(5)

The methodology is based on Calatayud et al, 2019, arXiv:1905.11230.157

Cluster optimization158

To investigate whether some subregions were more similar regarding group structure, we159

clustered the subregions based on the Jaccard index of dissimilarity as well as based on160

species overlap. We generated the clusters in two steps; first, we used the Uniform161

Manifold Approximation and Projection (UMAP, McInnes et al. 2018). UMAP is a162

dimension reducing algorithm which favours preserving local distances over global. In163

our case, this meant that the results from the UMAP were more focused on grouping164

similar webs together than accurately describing how dissimilar very different webs were.165

By changing the number of neighbours (ranging from two, to the total number of166

subregions, 25), the projection additionally varied in its focus on local versus regional167

similarities. In the second step, we analysed all projections with different neighbour168

settings for clusters using the HDBSCAN (Hierarchical density-based spatial clustering169
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of applications with noise) method (Campello et al. 2013). We arbitrarily set the170

minimum cluster size to three subregions. From the results we selected the best network171

clustering, that is, the one with the lowest mean dissimilarity within the clusters. Since172

the UMAP projections varied slightly, we repeated this process 10 000 times, from which173

we chose the best clustering.174

Species-wise group turnover175

For all species, we compared the group-relations of all pairs of species to see whether176

they were in the same group. By then comparing these pairwise relations to the same177

pairs in other webs, we obtained a measurement of how prone individual species or taxa178

were to changing their group-relations between webs. Accordingly, for each species we179

identified all possible species pairs (excluding mirrored and self-paired) in a network A.180

We checked whether each species pair was in the same or different groups in network A.181

We then compared the status of all pairs in network A to their status in all other182

networks. If the relationship for a species pair changed (either different groups → same183

group, or same group → different group) between two webs, there was turnover (Table184

1). From this, we calculated the proportion of pairs for each species which experienced185

turnover to obtain the mean species pairwise group turnover. For comparing the pairs in186

different networks, we only considered species which co-occurred between the two187

networks.188

Species and network metrics189

Taxonomic classifications of species were obtained from Kortsch et al. (2018b). We190

calculated the number of interactions and trophic levels for all species in both the191

metaweb and in each subregion. For species trophic level we used the NetIndices package192

in R (Kones et al. 2009), which uses the method from Christensen & Pauly (1992).193

Accordingly, the trophic level of primary producers and detritus is set to one, and194
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subsequent species are set to one plus the sum of their prey trophic levels, multiplied by195

the constituted diet proportions. We also calculated species overlap for all networks196

(metaweb and all subregions); for each pair of networks we calculated the number of197

species shared between two networks divided by the total number of unique species in198

both networks.199

Correlation with environmental factors200

To check for spatial autocorrelation for the group structure, we used the correlog201

function in the ncf package (Bjornstad 2018) in R. The function looks for autocorrelation202

using distance classes, which are tested using Moran’s I and then visualised as203

correlograms. Correlation between similarity in group structure and water column204

temperature as well as ocean depth was tested using a permutation-based multivariate205

analysis of variance (PERMANOVA) test, conducted using the adonis function from the206

vegan R package, (Oksanen et al. 2018) with 10 000 permutations and no stratification.207

Results208

The subregions shared 38%–87% of the species between them, with a mean of 62%.209

Comparing subregions to the complete species composition (metaweb), species overlap210

ranged from 49%–76%, with a mean of 63% (Fig. 1A). Species overlap between211

subregions correlated significantly with distance, where more closely-located network212

pairs had higher proportions of shared species while more distant regions differed more213

(Fig. 1B).214

Comparing the group structure of the metaweb to the subregions using the Jaccard215

index of dissimilarity resulted in differences ranging from 0.34–0.67 with a mean of 0.53.216

Somewhat simplified, the result can be interpreted as on average, 53% of the species217

found in the same group in the metaweb were no longer grouped in the separate218
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subregions. More specifically however, the number of species is not directly connected to219

the Jaccard index, as the index looks at the proportion of species in each group.220

Subsequently, small groups have same weight as large groups. For example, if several221

small groups tend to break up more than a few large groups, the dissimilarity index will222

be high regardless of how big proportion of the amount of species the small groups223

comprise.224

Comparing the subregions to each other, the dissimilarity in group structure had a225

bigger variability than when compared to the metaweb, ranging from 0.20–0.76 with a226

mean of 0.57. When we clustered the subregions based on their similarity in group227

structure, we obtained six clusters (Fig. 2A). We found that one of the clusters had the228

same mean dissimilarity as all subregions together (Fig. S2B; cluster 5, mean Jaccard229

dissimilarity: 0.57), while the other five clusters contained considerably more similar230

subregions (mean Jaccard dissimilarity excluding cluster 5: 0.35). Most of the subregions231

that were similar in their group structure were located in the same region, e.g.232

subregions 21–26 surrounding Svalbard (Fig. 2A). Indeed, the spatial autocorrelation233

correlogram showed a clear trend that spatially congregated subregions have more234

similar group structures than spatially separated subregions (Fig. 2B). Additionally, the235

Jaccard index and species overlap correlated significantly using a linear regression236

(R2=0.50, p<0.001). Similarity in group structure also correlated significantly with237

water column temperature (F1,22=5.08, p<0.001, R2=0.17) as well as depth (F1,22=2.38,238

p=0.012, R2=0.08), with regions experiencing similar abiotic conditions having more239

similar group structure.240

Species-wise group turnover241

Species-specific group turnover, which was based on how often pairs of species remained242

in the same group in different regions, ranged from 0.0024–0.57 with a median of 0.094.243

In general, primary producers had a very low turnover (0.015 median), meaning that244
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they generally stayed grouped independent of subregion (Fig. 3A). Both herbivores and245

predators had relatively high turnover (medians 0.093 and 0.10, respectively), while top246

predators experienced slightly lower group turnover (median 0.071). Species-wise group247

turnover correlated significantly with species number of links (R2=0.29, p<0.01), where248

species with more links experienced less turnover. Looking at the group turnover rate for249

the eight most species rich classes, there was a clear pattern of how class identity held250

additional importance to the turnover rate (Fig. 3B). Yet, comparing these patterns to251

the composition of trophic positions for the respective classes (Fig. 3C) discerned little252

to no further explanation to the observed patterns.253

Discussion254

Ecological communities are complex with numerous interacting species. Grouping these255

species in different ways is common practice in order to simplify the community256

structures and potentially reveal underlying factors which are important for community257

functionality. Here, we used the group model to analyse discrepancies and similarities in258

how species interact with each other across spatially divided, but related, ecological259

networks. The trophic roles defined by the group model can be thought of as functional260

groups, since the species within a group are defined based on their direct and indirect261

relationships to other groups of species. Accordingly, species within a group tend to262

interact with other species in the network in a similar way. We looked at how these263

groupings changed from two perspectives; (i) from a metaweb perspective with264

comparisons to the constituent subregions, and (ii) from a subregion perspective with265

comparisons between different subregions. Both perspectives showed substantial266

differences in group structures, with different species being varyingly prone to changes267

group memberships.268

The comparison of the metaweb to its constituent subregions is important because269

interaction networks are often compiled over large geographical areas (Dunne 2006).270
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Ecological networks based on such inclusive regions are likely to include local differences271

in both species composition and patterns of interactions due to varying biotic and272

abiotic conditions. Indeed, we found substantial differences in the group structure273

between the metaweb of the Barents Sea and its subregions, indicating that species were274

organised differently depending on data resolution and region considered. Consequently,275

identification of species’ ecological roles inferred from the general interaction patterns of276

a metaweb can result in erroneous conclusions on network structure and functioning.277

Structural discrepancies between a metaweb and its subregions can stem from two278

mechanisms – i) differences in species composition or ii) differences in interactions –279

both of which can lead to changes in group structure. The dataset used here is based on280

the metaweb concept, which assumes that a pair of species interacting in one location281

will do so whenever present together. Therefore, structural changes can only come from282

changes in link structure directly dependent on the species composition (i.e., if an283

interaction partner j of species i is present in location A but not in location B the284

interaction will only be realized in location A, and accordingly i will have a changed set285

of interactions). Inferred from the previous reasoning, using local food webs where286

interactions have been directly sampled will likely give a more accurate identification of287

group structure. Nevertheless, at the very least we here present a picture of species288

composition and its variation between areas, and most importantly how these factors289

affect group structure. Indeed, species inhabiting different habitats can have different290

preys and predators reflecting the local species composition, and thus play different291

ecological roles (Timóteo et al. 2018, Bartley et al. 2019). Such structural changes can292

have implications both for the species direct sensitivity to disturbances (Sellman et al.293

2016) and the effect of removal of a species on the rest of the community (Dunne 2006)294

including indirect effects (Eklöf & Ebenman 2006).295

However, it is not necessarily true that a pair of species will always interact if present296

together, as the presence of an interaction can be dependent on different environmental297

settings (Schleuning et al. 2011, Ferreira et al. 2017), which will enable or disable298
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specific interactions (Poisot et al. 2012, Chamberlain et al. 2014). Changes in299

interactions due to this mechanism are not accounted for in the dataset analysed here,300

as the metaweb from where the interactions are inferred merges all different habitats301

and potentially different trophic roles, from which the groups are then defined.302

Subsequently, interactions which are considered present in a subregion may actually be303

false positives (Cirtwill et al. 2019). Given the recursive nature of the group304

identification, the effect of these merged roles risks propagating to more species,305

assigning them into “false” groups that may lack coherent ecological basis. Inferred from306

this, our results can be considered as representing the maximum possible similarity307

between groups, with species’ roles likely being more variable in reality.308

When comparing subregions to each other, we found that their group structures varied309

more between themselves than when compared to the metaweb. In this dataset, the310

subregions were originally defined from their distinct environmental features (Hansen311

et al. 2016). Accordingly, the subregions vary in how similar they are to each other,312

including environmental factors such as average temperature and days of ice cover, but313

also variation in habitat types such as coastal and open water. This contributes to314

differences in species compositions, and subsequently group structure. Accordingly,315

species can potentially change its realized ecological role between the various subregions316

more than compared to the “averaged” roles obtained from the metaweb. The large317

variability in group structure between subregions motivated our clustering analyses of318

the subregions. Based on the Jaccard index results, aside from six subregions which did319

not have more in common than the overall mean, the subregions formed spatially related320

clusters based on group structure similarity. However, while the subregions were321

generally adjacent, spatial context often differed between clusters; for example322

depending on whether they included a shore line (e.g., cluster 4, Fig. 2A) or included323

mostly open sea (e.g., cluster 2, Fig. 2A). The relationship between spatial context and324

group structure was further supported by the positive correlation between group325

structure similarity and both ocean depth and sea temperature.326
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There was a clear relationship between species composition and group structure, but the327

result also left room for ambiguity. For comparison, we also generated clusters based on328

species overlap (see Fig. S2). At one extreme, the subregions belonging to clusters 2 and329

3 based group structure (Fig. 2A) also formed clusters based on species overlap. In other330

cases, the clustering based on species overlap generated clusters which diverged from the331

group structure clusters, e.g., comparing subregions 25 and subregion 41. They belonged332

to the same species overlap cluster and shared 85% of the species between them and, as333

such, were among the most similar subregion pairs in the Barents Sea regarding species334

composition. However, the group structures of subregions 25 and 41 differed335

substantially, scoring 0.5 in the Jaccard dissimilarity index. Hence, rather than only a336

quantitative dependence on overlapping species, the group structure was further defined337

by a more fine-grained species composition (see Fig. S3). The group changes included338

both clear functional changes, such as the forming of a top predator group and a339

Copepoda group, but also big compositional changes in the pelagic and surface species340

groups. As the groups were based on similarities in trophic interactions, the example of341

the forming of a top predator group in subregion 41 suggested that some predatory342

species were no longer present, and thus some of the species in subregion 25 branched off343

to form a new solely predatory group. Group differences such as these likely affect344

various ecological properties, including stability and population dynamics (Thébault &345

Fontaine 2010).346

There are several empirical examples of species that change their ecological role347

depending on which environment they are present in. For example, tiger sharks in348

Australian waters change diets and trophic position depending on if feeding occur in349

reefs, seagrass based or pelagic habitats where food web composition differ (Ferreira350

et al. 2017), and loggerhead turtles change diet depending on if feeding occur in pelagic351

or neritic areas (Hatase et al. 2002).352

From a species perspective, there was large variability in how frequently-grouped species353

pairs changed relationships. Primary producers such as algae or phytoplankton354
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experienced the least pairwise turnover. Yet, there was no further relationship with355

trophic level. Instead we found a slight, but statistically significant, correlation with356

number of interactions of species, where species with more links had lower turnover357

rates. However, this trend was seemingly outweighed by the species taxonomic identities358

(Fig. 3). For example, species in the classes Copepoda and Malacostraca had similar359

distributions of number of interactions, but clearly differed in their average species-wise360

turnover. Despite rather large differences in turnover between subregions, the two361

example classes rarely overlap in their distribution of species-wise turnover.362

Additionally, there was large variation in the turnover rates for the different taxa363

between different subregions; that is, between some subregions, the majority of group364

members stayed intact, while in others, species split into completely different groups365

(example in Box 1). This further strengthens the idea that the roles of a relatively large366

proportion of species are dynamic and dependent on local conditions.367

Conclusions368

Species interactions drive many ecological processes in food webs. Therefore, finding369

groups of species that are structurally similar is essential for our understanding of the370

functioning of ecological networks. Although all groups identified by the group model371

are not by necessity relevant for ecosystem functionality, species within a group do372

possess a unique ecological role different from species in other groups. Despite the often373

large overlap in species composition between the subregions in the Barents Sea dataset,374

we here show that there are still large differences their group structures, both when we375

compare the metaweb to more geographically limited subregions and when we compare376

subregions to each other. Hence, the ecological roles of the species often differ377

substantially depending on their spatial context. Species functionality in ecological378

networks is dependent on positioning in both trait space (physiological as well as379

behavioural) and trophic space (Coux et al. 2016). When a species’ trophic position380

16



changes, this recursively changes other species positions, potentially affecting the whole381

network. Consequently, even relatively small differences in species composition risks382

propagating into substantial differences in group structures. We conclude that data from383

metawebs can provide a general overview of the diversity of species and interactions in384

geographical areas with homogeneous environmental conditions and habitats.385

Nevertheless, in order to understand the role of a specific species in a network, we must386

consider that local conditions can have a large effect on the community composition and387

interaction pattern, subsequently changing species functional roles, with possible388

implications for network robustness, functionality and stability.389
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Tables514

Table 1: Example of how species-wise group turnover is calculated for species a, using

two example networks with same species but with slightly different groupings. All possible

pairs including species a, excluding self-paired and mirrored, are checked whether they

are in the same group in one or both networks. If their relationship changes between the

two networks, there has been turnover. The sum of pairs which experienced turnover is

then divided with the total number of pairs to obtain the proportional turnover.

Network A Network B Same group?
Species Group Species Group Pairs Net A Net B Turnover
a 1 a 1 a-b yes no 1
b 1 b 2 a-c no yes 1
c 2 c 1 a-d no no 0
d 2 d 3 a-e no no 0
e 3 e 2 a-f no no 0
f 3 f 3 Species a turnover: 2/5
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Figure 1: A: Heat map of the fraction of shared species between the 25 subregions and

the metaweb (M) in the Barents Sea. Subregions are ordered in ascending order of

distance to subregion 5 as an arbitrary example. B: Correlogram of spatial

autocorrelation of shared species between networks based on their distance to each other.

Filled circles indicate statistically significant autocorrelation according to Moran’s I.

Points above the line indicate positive autocorrelation, meaning that species compositions

are more similar than by chance, and below the line negative autocorrelation, with

species compositions more dissimilar than expected.
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Figure 2: In A, subregions are clustered based on their similarity in group structures

measured by the Jaccard index of dissimilarity. The subregions within each of the

clusters, except cluster 5 (blue crosses), showed similar community structures. Numbers

show the subregion ID:s as defined by Hansen et al. (2016). B shows a correlogram of

spatial autocorrelation for the Jaccard index of dissimilarity. Significant autocorrelation

(either positive, above the dashed line, or negative below) was tested with Moran’s I and

indicated by filled circles.
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Figure 3: A: Boxplot of the species-wise turnover, separated into trophic positions.

Data includes all species and mean turnover in each network. Boxplots show medians,

1st and 3rd quartiles, whiskers include values up to 1.5 times the interquartile range, and

points are outlying values outside these ranges. B shows the average species-wise

turnover for the eight most species-rich classes versus their mean number of

interactions. Each dot represents the values for a subregion where the total number of

species for the respective classes is more than five. C shows the proportions of trophic

positions for the species belonging to the classes included in B.
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Figure 4: Alluvial plot with the metaweb and five different subregions. Boxes and their

color show species frequencies in the respective group partitions, and flow lines indicate

how individual species change group partitions. As an example, the sea spider

(Pycnogonida spp.) is marked with a black flow line.
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Text boxes516

Box 1: Example of group changes for the Sea Spider. Here we exemplify how

a taxonomic class of species, in this case the Sea Spider class (Pycnogonida), changes

group membership between different subregions (Fig. 4, the sea spider’s group transitions

marked black). In the metaweb, sea spiders belong to a group consisting strictly of other

benthic species, including Echinodermata, Mollusca and Crustacea species. Tracking the

flow of species from the metaweb to subregion 21 (Fig. 4A), we can see that the sea spider

and the majority of species moves to group 3 together with an equally large assemblage

of species from group 2. As a result, the new group consists of an additional large part of

zooplankton species. While most of the species from the sea spider’s old group followed,

the additional added species from the other group increases the Jaccard dissimilarity

index. In the second comparison (Fig. 4B), the sea spider as well as the majority of

species remain remain in the group, resulting in a low Jaccard index. Similarly to Fig.

4C, despite most species ”changing groups”, it is mainly an identity change as the vast

majority of species still remain grouped. However, for comparison D, the sea spider’s

group scatters substantially, resulting in a high Jaccard index and the sea spider joining

a group consisting mainly of fish species. For the last comparison (Fig. 4E), despite the

two subregions being spatially adjacent, they belong to different clusters and there is

considerable turnover of species. In this instance, the sea spider changes groups from the

group consisting mainly of fish species to a group with a mix of both zooplankton and

benthic species.
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