Acknowledgments
We thank Raymond B. Huey for his comments and suggestions. This work was supported by grants from The Strategic Priority Research Program of Chinese Academy of Sciences (XDA20050201; XDB31000000), the National Key Research and Development Program of China (2016YFC0503200), National Natural Science Fund of China (31821001; 31801987), and China Postdoctoral Science Foundation Grant (2018M631571).
References
Andrews, R.M. (2000). Evolution of viviparity in squamate reptiles (Sceloporus spp.): a variant of the cold-climate model. J. Zool. , 250, 243–253.
Andrews, R.M. & Mathies, T. (2000). Natural history of reptilian development: constraints on the evolution of viviparity.Bioscience , 50, 227–238.
Angilletta, M.J. (2001). Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus ).Ecology , 82, 3044–3056.
Angilletta, M.J., Sears, M.W. & Pringle, R.M. (2009). Spatial dynamics of nesting behavior: lizards shift microhabitats to construct nests with beneficial thermal properties. Ecology , 90, 2933–2939.
Bennett, A.F. (1982). Energetics of activity in reptiles. In:Biology of the Reptilia (ed. Gans, C.; P.). Academic Press, New York, pp. 155–199.
Beuchat, C.A. & Vleck, D. (1990). Metabolic consequences of viviparity in a lizard, Sceloporus-jarrovi . Physiol. Zool. , 63, 555–570.
Blackburn, D.G. (1993). Chorioallantoic placentation in squamate reptiles - structure, function, development, and evolution. J. Exp. Zool. , 266, 414–430.
Böhm, M., Williams, R., Bramhall, H.R., McMillan, K.M., Davidson, A.D., Garcia, A., et al. (2016). Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size. Glob. Ecol. Biogeogr. , 25, 391–405.
Buckley, L.B. (2008). Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am. Nat. , 171, E1–E19.
Buckley, L.B., Ehrenberger, J.C. & Angilletta, M.J. (2015). Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct. Ecol. , 29, 1038–1047.
Du, W.G., Lu, Y.W. & Shen, J.Y. (2005). The influence of maternal thermal environments on reproductive traits and hatchling traits in a Lacertid lizard, Takydromus septentrionalis . J. Therm. Biol. , 30, 153–161.
Huey, R.B., Kearney, M.R., Krockenberger, A., Holtum, J.A., Jess, M. & Williams, S.E. (2012). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B , 367, 1665–1679.
Iraeta, P., Salvador, A. & Diaz, J.A. (2008). A reciprocal transplant study of activity, body size, and winter survivorship in juvenile lizards from two sites at different altitude. Ecoscience , 15, 298–304.
Jara, M., Garcia-Roa, R., Escobar, L.E., Torres-Carvajal, O. & Pincheira-Donoso, D. (2019). Alternative reproductive adaptations predict asymmetric responses to climate change in lizards. Sci. Rep. , 9.
Kearney, M. & Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. , 12, 334–350.
Landwer, A.J. (1994). Manipulation of egg-production reveals costs of reproduction in the tree lizard (Urosaurus ornatus ).Oecologia , 100, 243–249.
Levy, O., Borchert, J.D., Rusch, T.W., Buckley, L.B. & Angilletta, M.J. (2017). Diminishing returns limit energetic costs of climate change.Ecology , 98, 1217–1228.
Levy, O., Buckley, L.B., Keitt, T.H. & Angilletta, M.J. (2016a). A dynamically downscaled projection of past and future microclimates.Ecology , 97, 1888–1888.
Levy, O., Buckley, L.B., Keitt, T.H. & Angilletta, M.J. (2016b). Ontogeny constrains phenology: opportunities for activity and reproduction interact to dictate potential phenologies in a changing climate. Ecol. Lett. , 19, 620–628.
Lu, H.L., Wang, J., Xu, D.D. & Dang, W. (2018). Maternal warming influences reproductive frequency, but not hatchling phenotypes in a multiple-clutched oviparous lizard. J. Therm. Biol. , 74, 303–310.
Ma, L., Buckley, L.B., Huey, R.B. & Du, W.G. (2018). A global test of the cold‐climate hypothesis for the evolution of viviparity of squamate reptiles. Glob. Ecol. Biogeogr. , 27, 679–689.
Meiri, S., Brown, J.H. & Sibly, R.M. (2012). The ecology of lizard reproductive output. Glob. Ecol. Biogeogr. , 21, 592–602.
Mesquita, D.O., Costa, G.C., Colli, G.R., Costa, T.B., Shepard, D.B., Vitt, L.J., et al. (2016). Life-History Patterns of Lizards of the World. Am. Nat. , 187, 689–705.
Packard, G.C., Tracy, C.R. & Roth, J.J. (1977). The physiological ecology of reptilian eggs and embryos. And the evolution of viviparity within the Class Reptilia. Biol. Rev. , 52, 71–105.
Pincheira-Donoso, D., Tregenza, T., Witt, M.J. & Hodgson, D.J. (2013). The evolution of viviparity opens opportunities for lizard radiation but drives it into a climatic cul-de-sac. Glob. Ecol. Biogeogr. , 22, 857–867.
Pyron, R.A. & Burbrink, F.T. (2014). Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecol. Lett. , 17, 13–21.
Raymond B. Huey & Joel G. Kingsolver. (2019). Climate Warming, Resource Availability, and the Metabolic Meltdown of Ectotherms. Am. Nat. , 0, 000–000.
Roe, J.H., Hopkins, W.A. & Talent, L.G. (2005). Effects of body mass, feeding, and circadian cycles on metabolism in the lizardSceloporus occidentalis . J. Herpetol. , 39, 595–603.
Senner, N.R., Conklin, J.R. & Piersma, T. (2015). An ontogenetic perspective on individual differences. Proc. R. Soc. B Biol. Sci. , 282, 20151050.
Shine, R. (1995). A new hypothesis for the evolution of viviparity in reptiles. Am. Nat. , 145, 809–823.
Shine, R. (2004). Incubation regimes of cold‐climate reptiles: the thermal consequences of nest‐site choice, viviparity and maternal basking. Biol. J. Linn. Soc. , 83, 145–155.
Shine, R. (2014). Evolution of an evolutionary hypothesis: a history of changing ideas about the adaptive significance of viviparity in reptiles. J. Herpetol. , 48, 147–161.
Shine, R. & Bull, J.J. (1979). The evolution of live-bearing in lizards and snakes. Am. Nat. , 113, 905–923.
Sinervo, B., Mendez-De-La-Cruz, F., Miles, D.B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., et al. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science , 328, 894–899.
Sperry, J.H. & Weatherhead, P.J. (2009). Sex differences in behavior associated with sex-biased mortality in an oviparous snake species.Oikos , 118, 627–633.
Sun, B.J., Ma, L., Li, S.-R., Williams, C.M., Wang, Y., Hao, X.,et al. (2018). Phenology and the physiological niche are co-adapted in a desert-dwelling lizard. Funct. Ecol. , 32, 2520–2530.
Sunday, J., Bennett, J.M., Calosi, P., Clusella-Trullas, S., Gravel, S., Hargreaves, A.L., et al. (2019). Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B , 374, 20190036.
Tinkle, D.W. & Gibbons, J.W. (1977). The distribution and evolution of viviparity in reptiles . Museum of Zoology, University of Michigan Ann Arbor, Ann Arbor.
Wang, Z., Ma, L., Shao, M. & Ji, X. (2017). Are viviparous lizards more vulnerable to climate warming because they have evolved reduced body temperature and heat tolerance? Oecologia , 185, 573–582.
Yuan, F.L., Pickett, E.J. & Bonebrake, T.C. (2016). Cooler performance breadth in a viviparous skink relative to its oviparous congener.J. Therm. Biol. , 61, 106–114.