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Abstract 20 

Quantifying parameter sensitivities is a key issue in hydrological simulation and the 21 

choice of sensitivity analysis method play an important role during this process. The 22 

Analysis of Variance (ANOVA) approach is based on a biased variance estimator and 23 

the estimated variance contributions would be biased, depending on the sample sizes of 24 

the different variance sources. To diminish the effect of the biased variance estimator 25 

on the sensitivity analysis, three developed subsampling ANOVA approaches (single-, 26 

multiple- and full-subsampling ANOVA) are established in this research. Two case 27 

studies including one simplified regression model and one hydrological model are used 28 

to illustrate the performance of the approaches. The traditional sobol’s method is used 29 

as benchmark method. Results find that: (1) The subsampling effectively diminishes 30 

the bias introduced by the biased variance estimator. (2) The difference of sampling 31 

densities among parameters has great influence on quantification of parametric 32 

sensitivities in hydrologic modeling. (3) Compared with sobol’s method, the 33 

subsampling ANOVA methods can significantly reduce the calculation requirements 34 

while achieve similar calculation accuracy. The approaches proposed in this study can 35 

serve as a first basis for the application of subsampling ANOVA in conceptual 36 

hydrological model sensitivity analysis under multiple uncertainties. 37 

 38 
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requirement 41 

 42 

1、Introduction 43 

 44 

Hydrologic simulation is widely used for many water resource management such as 45 

water allocation, reservoir operation, and flood risk assessment (Ma et al., 2016, Fan et 46 

al., 2016, Fan et al., 2017). Temporally dynamic and spatially distributed processes in 47 

watershed systems are described through simple mathematical equations in conceptual 48 

hydrological model (Jin et al., 2010). However, significant uncertainties are associated 49 

with such descriptions resulting from uncertainties in model parameters, structures and 50 

inputs (Refsgaard and Storm, 1990, Vrugt, 2016, Liu et al., 2017, Bárdossy, 2007, 51 

Bárdossy and Singh, 2008). Good modeling practice requires an evaluation of the 52 

confidence in the model outputs, which includes quantification of the uncertainty in 53 

model results (i.e., uncertainty analysis) and an evaluation of how much each 54 

input/parameter contributes to the output uncertainty (i.e., sensitivity analysis) 55 

(Loosvelt et al., 2013, Song et al., 2015, Götzinger and Bárdossy, 2008). Without a 56 

realistic assessment of various uncertainties, decision makers may encounter troubles 57 

in accurately describing hydrologic processes and assessing regional water resources 58 

situation (Kelly et al., 2013, Zhang et al., 2016). Therefore a key issue in hydrological 59 

simulation is to quantify and reduce the various uncertainties in order to provide reliable 60 

hydrologic predictions (Jin et al., 2010, Song et al., 2015, Pianosi et al., 2016, Gamerith 61 



 

4 
 

et al., 2013).  62 

 63 

To analyze the sources of uncertainty, evaluate the contribution of each uncertainty 64 

factor and identify the key factors that affect model performance, various sensitivity 65 

analysis methods such as local or global methods, and qualitative or quantitative 66 

methods have been proposed in recent decades (Song et al., 2015, Tian, 2013, Pianosi 67 

et al., 2016). Local sensitivity analysis addresses sensitivity relative to point estimates 68 

of parameter values while a global sensitivity analysis examines the effects of input 69 

variations on the outputs in the entire allowable ranges of the input space (Hamby, 1995, 70 

Zhan et al., 2013). With the ability to reflect the effects of interactions between different 71 

parameters, particularly the nonlinear relationship, global sensitivity analysis is more 72 

popular in hydrological applications (Van Griensven et al., 2006, Cibin et al., 2010, Hu 73 

et al., 2015, Khorashadi Zadeh et al., 2017, Bennett et al., 2018). A series of global 74 

sensitivity analysis methods including qualitative screening methods (Morris, 1991, 75 

Campolongo et al., 2007) and quantitative techniques based on variance decomposition 76 

(Saltelli et al., 2010, Sobol’, 2010, Saltelli et al., 2008, Vega et al., 1998, Bosshard et 77 

al., 2013) are available. The choice of sensitivity analysis method has an important 78 

impact on model parameters sensitivities results (Saltelli et al., 2019, Pianosi et al., 79 

2016).  80 

 81 

Among quantitative global sensitivity analysis methods, Analysis of Variance (ANOVA) 82 
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has been widely used for identifying important uncertainty sources, quantifying 83 

individual and interactive impacts of contributors and guiding efforts (Qi et al., 2016b). 84 

This method has been used to investigate the influence of pollutants and seasonality on 85 

the river water quality (Vega et al., 1998), the contribution of hydrological model 86 

parameters to the discharge projection uncertainty (Addor et al., 2015), and the impact 87 

of climate changes on flow frequency (Giuntoli et al., 2015). Compared with other 88 

approaches, ANOVA is handy for handling small samples and more computationally 89 

efficient in uncertainty quantification (Tang et al., 2006, Qi et al., 2016c). However, it 90 

has been argued that the estimated variance contributions using the ANOVA method 91 

would be biased, depending on the sample size differences (Bosshard et al., 2013). To 92 

diminish the effect of the sample size on contribution quantification (Bosshard et al., 93 

2013) proposed a subsampling scheme based on the theory of the ANOVA (here, we 94 

refer this method as single-subsampling ANOVA) and applied it to assess the 95 

importance of different uncertainty sources in an ensemble of hydrological climate-96 

impact projections. By calculating the multiplicative bias of the variance ratio in the 97 

synthetic experiment without subsampling and with subsampling, the results indicated 98 

that the bias introduced by the variance estimator of ANOVA can be diminished 99 

effectively by the subsampling (Bosshard et al., 2013). To improve hydrological model 100 

calibration, (Qi et al., 2016c) used single-subsampling ANOVA to quantify the 101 

individual and interactive influence of algorithm parameters dynamically. (Qi et al., 102 

2016a) also evaluated global fine-resolution precipitation products and their uncertainty 103 
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quantification in ensemble discharge simulations by using single-subsampling ANOVA. 104 

In these investigations, single-subsampling-ANOVA has shown good performance in 105 

quantifying respective contributions of various uncertainty sources to the overall output 106 

variance. However, only single factor is subsampled in the above studies. There is a 107 

lack of comparison and analysis of the influence on uncertainty quantification when 108 

different factors are subsampled in ANOVA. The influence may also be uncertain if 109 

multiple factors are subsampled at the same time. How will the results change if all the 110 

factors are subsampled whereas the levels of subsampling are different? Moreover, it is 111 

necessary to compare subsampling ANOVA methods with some widely used sensitivity 112 

analysis methods to demonstrate the applicability of the subsampling ANOVA 113 

approaches. 114 

 115 

The objectives of this paper is to (i) investigate impacts of subsampling different factors 116 

separately on the resulting sensitivity results; (ii) propose multiple-subsampling and 117 

full-subsampling ANOVA approaches to enhance the applicability of ANOVA in 118 

sensitivity analysis; (iii) reveal the influence of subsampling schemes in multiple-119 

subsampling and full-subsampling ANOVA approaches on sensitivity analysis. The 120 

applicability of different subsampling ANOVA methods is illustrated through two case 121 

studies based on a three-parameter simplified model (Chen et al., 2019) and a four-122 

parameter daily lumped rainfall-runoff model (GR4J model) (Perrin et al., 2003). The 123 

traditional sobol’s method is used as benchmark method to evaluate the performance of 124 

javascript:void(0);
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different subsampling ANOVA approaches. 125 

 126 

 127 

2、 Methodology  128 

 129 

2.1 ANOVA sensitivity analysis techniques  130 

 131 

In order to use the same terminology to present each sensitivity technique, a generalized 132 

model is defined as:  133 

 1 2( , ,... )kY F X X X=  (1) 134 

Where 1 2, ,... kX X X  represent the independent variable (such as model parameters, 135 

or model structure) and Y represents the response (such as the model performance). 136 

Variance-based methods use a variance ratio to estimate the importance of 137 

parameters. According to the ANOVA theory, the total sum of the squares (SST) can be 138 

divided into the sum of squares due to individual model parameters and their 139 

interactions as follows (Saltelli et al., 2008., Saltelli et al., 2010). 140 

 1,2,...,

1 1

...
k k k

i ij k

i i j i

SST SS SS SS
= = 

= + + +    (2) 141 

where iSS   represents the squares due to the individual effect of iX   and ijSS   to 142 

1,2,...,kSS  represent the squares due to interactions among k factors. In this model, we 143 

summarize all interaction terms into the term SSI . 144 

 1,2,...,

1 1

...
k k k

ij k i

i j i i

SSI SS SS SST SS
=  =

= + + = −   (3) 145 
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Then, for each effect, the variance fractions 
2  are derived as follows: 146 

 2 i
i

SS

SST
 =   (4) 147 

 2

I

SSI

SST
 =   (5) 148 

where: 149 

  150 

 
1 2

1 2

1 2

, , 2

1 1 1

( )
k

k

k

TT T
t t t o o o

t t t

SST Y Y
= = =

= −    (6) 151 

 
1 2

1 2

, , , 2

1 1 1

( )
k

i
i

k

TT T
o o t o o o o

t t t

SS Y Y
= = =

= −    (7) 152 

The symbol “o” indicates averaging over the particular index. Values of 0 and 1 for the 153 

variance fraction 
2  correspond to a contribution of an effect to the total ensemble 154 

variance (uncertainty) of 0% and 100%, respectively. Obviously: 155 

 156 

 
2 2 1

1 1

1

k

ik k
i i

i I

i i

SS SSI
SS SSI

SST SST SST

=

= =

+

+ = + = =


     (8) 157 

 158 

2.2  Subsampling 159 

To diminish the effect of the sample size on contribution quantification in ANOVA, 160 

(Bosshard et al., 2013) proposed a subsampling scheme. Assume that there are iT  161 

elements for each parameter iX , the vector iX  can be represented as
ii,1 i,2 i,3 i,T, ,x x x x . 162 

In each subsampling iteration, two elements are selected out of the total Ti elements 163 

which results in a total of 
i

2

TC  (specify that C is the combination symbol) possible 164 

element pairs for iX . Therefore, for element
ii,tx , the it  is replaced by (h,j)g , which is 165 
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a 
22
iTC  matrix as Formula (9). Here h means the row number and j means the column 166 

number. The total number of columns is defined as J. Therefore, h=1 or 2 and j=1, 2, 167 

3,……,J. For more details of subsampling scheme, please refer to the literature 168 

(Bosshard et al., 2013). 169 

 170 

 i-2 i-2 i-1

i i-1 i i

1 1 1 2 2 T T T
( , )

2 3 T 3 4 T T T
g h j

 
=  
 

  (9) 171 

 172 

2.3 Single-subsampling ANOVA 173 

Single-subsampling ANOVA means that only one parameter from the parameter vector 174 

( 1 2 k, ,...X X X   ) is subsampled before the ANOVA. Assuming that the nX   is 175 

subsampled, which mean the two elements selected from vector 
nn,1 n,2 n,3 n,T, ,x x x x are 176 

used for nX . As for all other parameter iX , there are still iT  elements for each iX . We 177 

estimate the terms in equations (2) and (3) using the subsampling procedure introduced 178 

in section 2.2 as follows.  179 

 180 

 
1 2

1 2

1 2

2
, ( , ) , ( , ) 2

1 1 1 1

( )
k

k

k

TT T
t t g h j tj o o g o j o

t t h t

SST Y Y
= = = =

= −     (10) 181 

For i n= :  182 

 1 2

2
, ( , ) , ( , ) 2

1 2 1 1

1

( )kt t g h j tj o o g o j o

i n n k

h

SS TT T T T Y Y− +

=

= −   (11) 183 

For i n :  184 

 
, ( , ) , ( , ) 2

1 2 1 1 1 1

1

2 ( )
i

i

i

T
o o t g o j oj o o g o j o

i i i n n k

t

SS TT T T T T T Y Y− + − +

=

=  −  (12) 185 

The symbol o  indicates averaging over the particular index. Then, for each effect, the 186 
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variance fraction 
2  is derived as follows: 187 

 188 

 
2

1

1
jJ

i
i j

j

SS

J SST


=

=    (13) 189 

 
2 2

1

1
k

I i

i

 
=

= −   (14) 190 

 191 

2.4  Multiple-Subsampling ANOVA 192 

The single-subsampling ANOVA may lead to biased results if different parameters are 193 

chosen for subsampling. As an extension of the single-subsampling ANOVA, a 194 

multiple-subsampling scheme is introduced to ANOVA, leading to a multiple-195 

subsampling ANOVA approach. Multiple-subsampling ANOVA means that more than 196 

one parameter from the parameter vector ( 1 2 k, ,...X X X ) are going to be subsampled at 197 

the same time before the ANOVA is calculated. Assume that p q,X X  are subsampled 198 

then p qt , t   are replaced by p p q q( , ), ( , )g h j g h j   respectively. We estimate the 199 

terms in equations (2) and (3) using the subsampling procedure as follows: 200 

 201 

1 2 k

1 2 p p q q k p q

1 2 p q k

T T T2 2
, ( , ) ( , ) , ( , ) ( , ) 2

1 1 1 1 1

( )
t t g h j g h j t o o g o j g o j oj

t t h h t

SST Y Y
= = = = =

= −      (15) 202 

For p qi = :  203 

1 2 p p q q k p p

p q

2 2
, ( , ) ( , ) , ( , ) ( , ) 2

1 2 k

1 1

T T T ( )
t t g h j g h j t o o g o j g o j oj

i

h h

SS Y Y
= =

=    −    (16) 204 

For p qi  :  205 



 

11 
 

p q p q

T
, ( , ) ( , ) , ( , ) ( , ) 2

1 2 i-1 i+1 k

1

2× ×2×T ×T T ×T T ( )
i

i

i

o o t g o j g o j o o o g o j g o j oj

i

t

SS Y Y
=

= −  206 

 (17) 207 

Then, for each effect, the variance fraction 
2  is derived as follows: 208 

 209 

 
2

1

1
jJ

i
i j

j

SS

J SST


=

=    (18) 210 

 
2 2

1

1
k

I i

i

 
=

= −   (19) 211 

 212 

2.5 Full-Subsampling ANOVA 213 

Moreover, a full-subsampling approach can be formulated when all parameters are 214 

going to be subsampled. In detail, the full-subsampling ANOVA means that all 215 

parameters 1 2, ,... kX X X  are subsampled before ANOVA is calculated. Consequently, 216 

1 2 k, ,t t t  are replaced by 1 1 2 2 k k( , ), ( , ), ( , )g h j g h j g h j  respectively. We estimate the 217 

terms in equations (2) and (3) using the subsampling procedure as follows: 218 

 219 

1 1 2 2 k k 1 2 k

1 2 k

2 2 2
( , ), ( , ) ( , ) ( , ) ( , ) ( , ) 2

1 1 1

( )
g h j g h j g h j g o j g o j g o jj

t t t

SST Y Y
= = =

= −    (20) 220 

1 1 2 2 k k 1 2 k

1 2 k

2 2 2
( , ), ( , ) ( , ) ( , ), ( , ), ( , ) 2

1 1 1

( )
g h j g h j g h j g o j g o j g o jj

i

h h h

SS Y Y
= = =

= −     (21) 221 

 222 

Then, for each effect, the variance fraction 
2  is derived as follows: 223 
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2

1

1
jJ

i
i j

j

SS

J SST


=

=    (22) 224 

 
2 2

1

1
k

I i

i

 
=

= −   (23) 225 

 226 

To evaluate the performance of the above different subsampling ANOVA approaches, 227 

two test cases are applied in the following. 228 

  229 

3、 Analytical case  230 

 231 

3.1. Problem statement 232 

 233 

A simple model with three unknown parameters is employed to illustrate the proposed 234 

subsampling ANOVA approaches, which is expressed as follows: 235 

 3| |

3 1 2 3 1 3 1 2 2 1 2 3( , , ) * *sin( * ) * * *
2

X
F X X X X X X X X e X X X


= + + +   (24) 236 

where 1 2,X X  and 3X are independent variables uniformly distributed within [0, 1]. 237 

This simplified model is proposed by (Chen et al., 2019). The purpose of this model is 238 

to explore the sensitivity indices change of model parameters with different 239 

subsampling methods in the ANOVA-based sensitivity analysis. In our study, we define 240 

“5” as the five levels are selected equidistantly within the initial parameter range firstly. 241 

Then the five levels are subsampled (see section 2.1), and totally 10 (
2

5

5*4
C 10

2*1
= = ) 242 

combinations of different level pairs are obtained for two-level ANOVA. Similarly, “2” 243 

represents only two levels (maximum and minimum values) of the parameter were 244 
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selected from the range, without subsampling. For example, “522” means that five 245 

levels of X1 are selected with equidistantly from the range before subsampling, 246 

meanwhile only two levels of the X2 and X3 are selected from the range. In turn, we 247 

define 252, 225, 552, 525, 255, 222, 333, 444 and 555 for different ANOVA approaches. 248 

For 522, 252 and 225, only one of the three parameters is subsampled, which represent 249 

single-subsampling ANOVA. For 552, 525 and 255, two of the three parameters are 250 

subsampled, which represent multiple-subsampling ANOVA scheme. Similarly, 251 

222,333,444 and 555 represent full-subsampling ANOVA with different parameters 252 

levels.  253 

 254 

3.2 Influence of subsampled parameter 255 

Figure 1. presents sensitivity indices of individual and interactions of the three 256 

parameters under different subsampling ANOVA approaches. Figure 1(a) represents 257 

single-subsampling ANOVA and Figure 1(b) represents multiple-subsampling ANOVA. 258 

Firstly, it can be found that the parameter’s sensitivity varies with each other. In detail, 259 

the sensitivity range of 1 2 3X ,X ,X   and interactions are 4.1%-41.2%, 25.1%-78.5%, 260 

7.5%-47.3% and 7.0%-15%, respectively. In most cases, X2 is the most sensitive 261 

parameter. Secondly, the parameter’s individual sensitivity varied significantly with 262 

different subsampling scheme. For single-subsampling ANOVA, the minimum value 263 

(the red bar) of X1’s sensitivity is obtained in 522 where only X1 is subsampled. 264 

Similarly, the minimum values (the red bar) of X2’s and X3’s sensitivities are obtained 265 
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in 252 and 225, respectively. The results indicate that the individual sensitivity of the 266 

parameter will reduce sharply when the parameter is subsampled in single-subsampling 267 

ANOVA. As for multiple-subsampling ANOVA in Figure 1(b), the maximum value 268 

(blue bar) of X1’s sensitivity is obtained in 255 where only X1 is non-subsampled. 269 

Similarly, the maximum values of X2’s and X3’s sensitivities are obtained in 525 and 270 

552, which indicate that in multiple-subsampling ANOVA, the individual sensitivity 271 

will increase for the non-subsampled parameter. Thirdly, the black bars in Figure 1 272 

represent sensitivity indices of individual and interactions for the three parameters 273 

obtained by Sobol’s. Compared with sobol’s results, the subsampling process will 274 

reduce the subsampled parameter’s individual sensitivity and increase the non-275 

subsampled parameter’s individual sensitivity. Lastly the subsampling process not only 276 

change the value of parameter sensitivities but also change the ordering of the parameter 277 

sensitivities (as shown in supporting masteries Figure S1-S3). For example, the order 278 

of sensitivity for the case by the 522 method is parameter x2 > x3 > interaction > x1 279 

while 252 values yield a slightly different order: x3 > x1 > x2 > interaction. This also 280 

indicates that the results of either single- or multiple-subsampling schemes are biased. 281 

Consequently, the full-subsampling ANOVA approach is expected to employ in the 282 

following part aims to diminish the deviation.  283 

 284 

3.3 Influence of parameter levels 285 

 286 
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In the full-subsampling ANOVA approach, different levels can be chosen for each 287 

parameter from its variation range. In this study, four scenarios would be tested with 288 

each parameter having 2, 3, 4 or 5 levels (i.e. 222, 333, 444 and 555) respectively. 289 

Figure 2 shows the influence of parameters levels on individual and interactions 290 

sensitivity. The sensitivities of three parameters change with the parameters levels 291 

change. As the parameters levels increase from 222 to 555, the individual sensitivity of 292 

X1 and X3 gradually increase from 11.7% and 19.4% to 19.1% and 24.1%, respectively. 293 

At the same time, the interactive parameter sensitivity gradually decrease from 18.1% 294 

to 5.5%. The individual sensitivity of X2 which has the biggest contribution keeps 295 

relatively stable, ranging from 50.9% to 52.2%. The results show that for full–296 

subsampling ANOVA method, the individual and interactive parameters sensitivities 297 

are affected by the subsampled parameters levels. The increased parameters levels 298 

increase the sensitivity value slightly for the low sensitive parameter and decrease the 299 

interactive sensitivity. Another thing to watch out is that the order of parameters 300 

sensitivities would change when the parameter level increases from 2 to 3. While when 301 

the 3 or more parameter levels are chosen, the variation of the obtained results is 302 

relatively small and the order of parameters sensitivities remained consistent with that 303 

of sobol’s. As a whole, the full-subsampling ANOVA approach with more than 3 levels 304 

is suggested to diminish the deviation.  305 

 306 

3.4 Comparison with sobol’s method 307 

javascript:;
javascript:;
javascript:;
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 308 

To evaluate the accuracy of different subsampling ANOVA approaches, the sobol’s 309 

method is used as a benchmark method, which is widely used in hydrological models 310 

(Zhang et al., 2013, Wang et al., 2018, Song et al., 2015, Sobol’, 2010) as an effective 311 

approach to globally characterize single- and multiple-parameter interactive 312 

sensitivities (Tang et al., 2007). In this study, take sensitivity indices calculated by 313 

sobol’s method as base values, the deviation between subsampling ANOVA and sobol’s 314 

can be evaluated as 
* ' 2

1

( )
I

sobol s

i i

i

 
=

− , where 
*

i  is the sensitivity indices calculated 315 

by the subsampling ANOVA approaches, 
'sobol s

i  is the sensitivity indices calculated by 316 

sobol’s method. All the sensitivity indices calculated by subsampling ANOVA and 317 

sobol’s are available in supporting material and the deviations between subsampling 318 

ANOVA and sobol’s methods are presented in Figure 3. 319 

 320 

The deviations between results of subsampling ANOVA and sobol’s vary (0.0008-0.114) 321 

with different subsampling schemes and parameters levels. The lower deviation 322 

indicates the individual and interactions sensitivity calculated are more accurate. For 323 

single-subsampling ANOVA and multiple-subsampling ANOVA approaches, the 324 

corresponding deviations range from 0.024 to 0.114. As expected, significantly better 325 

performances (the corresponding deviations range from 0.001 to 0.016) are obtained in 326 

full-subsampling ANOVA method. Moreover, the deviations are lower than 0.002 if 3 327 

or more parameter levels are chosen in the full-subsampling ANOVA. Such deviations 328 
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indicate that biased/inaccurate sensitivity indices obtained through the single/multiple-329 

subsampling ANOVA methods. The negligible bias in full-subsampling ANOVA 330 

method show that the parameters sensitivities are very close to the “true value” when 331 

the subsampled parameter level is 3 or more. Therefore, in order to get more reliable 332 

parameter sensitivity results, the full-subsampling scheme with 3 or more parameter 333 

levels is necessary for the application of subsampling ANOVA methods.  334 

 335 

Many researches point that sobol's method is computationally expensive (Tang et al., 336 

2008, Tian, 2013, Reusser et al., 2011).  Here, to illustrate the computational 337 

advantages of the subsampling ANOVA methods, the number of model running and the 338 

number of calculations of variance required by subsampling ANOVA methods and 339 

sobol’s are presented in Table 1. Generally speaking, N*(M+2) model evaluations are 340 

required for the application of sobol’s, where N is the random sample size and M is the 341 

number of parameters, for more details about sobol’s method, please refer to (Sobol', 342 

1990, Nossent et al., 2011). In this case study, in order to get a stable result of the 343 

sensitivity analysis, different set of N samples are applied in the sobol’s. We found that 344 

the sensitivity analysis remained relatively stable when N was larger than 2000. So in 345 

this simple three-parameter model, the number of running the model is 2000*(3+2), 346 

which is a barely acceptable computing requirement.  347 

 348 

Fortunately the subsampling ANOVA methods can significantly reduce the calculation 349 
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requirements while sobol’s calculation accuracy is achieved. For example, in full-350 

sampling "444", the model needs to run only 64 times (64=4*4*4). It should be noted 351 

that after running the model 64 times, the 64 sets of model responses can be obtained. 352 

Through resampling process, 216 sets (216=
2 2 2

4 4 4C *C *C , where 2

4

4*3
C 6

2*1
= = ) of 353 

2*2*2 combination can be obtained, and each combination can calculate a set of 354 

variance results. Thus, 216 sets of variance results can be obtained. The final sensitivity 355 

results can be obtained by averaging and homogenizing the 216 sets of variance. The 356 

number of running the model decides the computing requirements. Through reducing 357 

the number of model runs, the subsampling ANOVA methods are effective and feasible 358 

sensitivity analysis methods with relatively low computational requirements. Reduction 359 

of model running times requirement is very important, especially for those models with 360 

limited parameters but extensive computational demand. 361 

4、Practical case study 362 

4.1 Problem statement 363 

 364 

To further illustrate the applicability of the subsampling ANOVA methods, the proposed 365 

approaches are applied for parameter sensitivity analyses in hydrological simulation 366 

through the conceptual model GR4J, as shown in Figure 4. The study area is Zengjiang 367 

River which is one tributary of Dongjiang River located in the Pear River Delta, China 368 

as shown in Figure 5. The meteorological data (daily evaporation and daily precipitation) 369 

are collected from Qilinzui Hydrological Station (as shown in Figure 5) during the 370 
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period of 2009-2015 which were obtained from Hydrological Data of Pearl River Basin, 371 

Annual Hydrology Report, P. R. China. The total drainage area above the Qilinzui 372 

Hydrological Station is 2866 km2, accounting for 91% of the Zengjiang River basin 373 

(3160 km2). The mean annual temperature and precipitation are 21.6°C and 2188 mm, 374 

respectively. More details about Zengjiang River basin can be found in  (Tao et al., 375 

2011).  376 

 377 

GR4J model is a rainfall-runoff model which is based on four free parameters from 378 

daily rainfall data. In GR4J, the production components include an interception of raw 379 

rainfall and potential evapotranspiration by an interception reservoir of null capacity, a 380 

soil moisture accounting procedure to calculate effective rainfall and a water exchange 381 

term to model water losses to or gains from deep aquifers. Its routing module includes 382 

two flow components with constant volumetric split (10–90%), two unit hydrographs, 383 

and a non-linear routing store (as shown in Figure 4). The descriptions and initial 384 

fluctuating ranges of GR4J model parameters are presented in Table 1. For more details 385 

of GR4J model, please refer to the literature (Perrin et al., 2003). The initial fluctuating 386 

ranges of GR4J model parameters are wide considering the structure varies in different 387 

basins. However, for a specific watershed, the appropriate parameter range should be 388 

obtained through the calibration process that produce an acceptable level of model 389 

performance (Freer et al., 1996, Pianosi et al., 2016, Shin et al., 2013). It’s reported that 390 

the parameters sensitivities were strongly influenced by the range of parameter values 391 
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used (Shin et al., 2013, Wang et al., 2013), therefore it is important to obtain an 392 

appropriate parameter range corresponding to considered model performance before 393 

SA (Shin et al., 2013, Saltelli et al., 2019). Therefore, in this study, the model calibration 394 

based on the MH algorithm is used prior to SA in order to constraint the input variability 395 

space. The details about MH algorithm are presented in supporting materials. Nash–396 

Sutcliffe model efficiency (NSE) is used to assess the predictive power of model results 397 

which involves standardization of the residual variance. Here, the objective functions 398 

adopted can be represented as follows (Nash and Sutcliffe, 1970, Legates and Jr, 1999): 399 
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where 𝑄𝑠𝑖𝑚  is the simulated runoff, 𝑄𝑜𝑏𝑠 is the observed runoff, 𝑄𝑜𝑏𝑠  ̅̅ ̅̅ ̅̅ ̅ is the mean 401 

value of the observed runoff and 𝑛 is the sample size. 402 

 403 

For the MH algorithm parameterization, the markov chain with 10,000 iterations for 404 

each parameter are examined and the model performance of each iteration are presented 405 

in Figure 6. The NSE is greater than 0.74 and remained stable after a number of 406 

iterations. In this study, the first 50% of the samples in markov chain are ruled out as a 407 

warm-up period. The last 50% of the samples passed the Heidelberger and Welch 408 

Convergence Diagnostics (Heidelberger and Welch, 1983). The posterior distributions 409 

are obtained from the last 5000 parameter sets and the posterior PDFs of each parameter 410 

are presented in Figure 7. All parameters ranges appear in a relatively small interval 411 

which is different from their initial value. The posterior PDFs of four parameters are 412 
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approximately normal distribution characteristics, indicating that the parameters in 413 

GR4J are well identified after a number of iterations even with a wide range of prior 414 

densities. The predictive intervals of stream obtained by the last 5000 parameter sets 415 

are presented in Figure 8. It can be observed that the obtained predictive intervals can 416 

generally match the observations, except for some overestimations in high-flow periods. 417 

With the appropriate parameter range, the next work is to evaluate how much each 418 

parameter contributes to the stream uncertainty. Sensitivities of parameters in a rainfall–419 

runoff model structure are specific to a site, and cannot be assumed from previous work 420 

in other catchments (Van Griensven et al., 2006, Shin et al., 2013). In this study, the 421 

proposed subsampling ANOVA methods are applied for analyzing parameters 422 

sensitivities of GR4J model in Zengjiang River basin. Based on the calibration of GR4J, 423 

the ranges of the four parameters are determined as presented in Table 2. Similar to 424 

Section 3.1, different subsampling ANOVA approaches, including single-subsampling 425 

ANOVA (5222, 2522, 2252 and 2225), multiple-subsampling ANOVA (5522, 5252, 426 

5225, 2552, 2525, 2255, 5552, 5525, 5255 and 2555), and full-subsampling ANOVA 427 

with different parameters level (2222, 3333, 4444 and 5555) are defined and applied 428 

here. 429 

 430 

4.2 Influence of subsampled parameter  431 

 432 

With only one parameter subsampling, the contributions of individual and interactive 433 
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effects for the four parameters in GR4J model are shown in Figure 9. There are several 434 

findings as follows. Firstly, taking sobol’s results as the reference results, X1 makes the 435 

largest independent contribution to GR4J model uncertainty in Zenjiang River and 436 

followed by the interactive effects of the four parameters. X1(the first parameter) 437 

represents the maximum capacity of the production store. The high sensitivity of 438 

parameter X1 indicates that runoff generation in Zengjiang basin is highly affected by 439 

the maximum capacity of the production store. The maximum capacity of the 440 

production store (X1) increases to handle with an overestimation of rainfall and 441 

decreases to handle with underestimation, thus adapting its capacity to hold and 442 

evaporate different amounts of water (Oudin et al., 2006). Secondly, the parameters 443 

sensitivities obtained change significantly with different subsampling scheme. For 444 

example, the contributions of X1 are 0.109, 0.230, 0.275 and 0.205 for the four single-445 

subsampling schemes (where X1, X2, X3, and X4 are subsampled separately). The 446 

lowest sensitivity value for X1 obtained in 5222, which X1 decomposed into five levels 447 

and take subsampling. The other three parameters have the same basic behaviors as the 448 

X1. Therefore, similar with section 3.2, the subsampling procedure also lead to a lower 449 

sensitivity value for one parameter which is subsampled in. Thirdly, the ranking of 450 

parameter sensitivity is influenced by different single-subsampling schemes. In order 451 

to check if hierarchy is kept by the methods more clearly, the bar plots which is close 452 

to Figure 9，but grouped by simulations and not by parameter are presented in 453 

supplementary materials Figure S4-S6. For instance, the sensitivity order is 454 
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Interactions >X3 > X4 > X1 > X2 in 5222 scheme, while in 2252 scheme, the sensitivity 455 

order is Interactions >X1 > X3 > X4 > X2. Such results indicate that the single-456 

subsampling ANOVA approach generate unreliable sensitivity values, which are highly 457 

influenced by the parameter to be subsampled.  In multiple-subsampling ANOVA, 458 

more than one parameters in GR4J model are subsampled. The contributions of 459 

individual and interactive effects for GR4J model parameters under different multiple-460 

subsampling schemes are presented in Figure 10.  461 

 462 

It can be found that, for each parameters, the red bar values are significantly lower than 463 

the blue bar values. The mean values of the red bars for X1, X2, X3 and X4 are 0.184, 464 

0.033, 0.124 and 0.078, respectively. Meanwhile the mean values for the blue bars for 465 

X1, X2, X3 and X4 are 0.306, 0.098, 0.264 and 0.225, respectively. For each parameter, 466 

the mean value without subsampling (blue bars) is more than twice as much as the mean 467 

value with subsampling (red bars). This indicates that, similar with the single-468 

subsampling scheme, the multiple-subsampling ANOVA approaches also generate 469 

unreliable results, and the subsampling-procedure would significantly reduce the 470 

resulting individual sensitivity value. In other words, the difference of sampling 471 

densities among parameters has great influence on quantification of parametric 472 

sensitivities in hydrologic modeling. 473 

  474 

 475 
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4.3 Influence of subsampled parameter level in full-subsampling 476 

 477 

In the full-subsampling ANOVA approach, all the four parameters in GR4J model are 478 

subsampled. However, different levels for each parameter can be chosen before the 479 

subsampling procedure. Similar with the analytic case in section 3, four levels (2 to 5) 480 

are going to be chosen for each parameter in GR4J. The contributions of individual and 481 

interactions for GR4J model parameters under different parameter levels in full-482 

subsampling ANOVA are presented in Figure 11. As the parameter levels increase from 483 

2222 to 5555, the sensitivity of X1, X2 and X4 gradually increase from 20.1%, 3.7% and 484 

4.7% to 31.0%, 7.6% and 15.8%, respectively. At the same time, the contribution of X3 485 

and the interaction gradually decrease from 21.7% to 17.8% and 48.9% to 25.9%. The 486 

results indicate that the parameters levels will affect the individual and interactive 487 

sensitivities in the full-subsampling ANOVA approach. In details, the sensitivity of the 488 

most sensitive parameter and interaction generally decrease, while that of the other 489 

parameters increase with the parameter level increased. The obtained results would vary 490 

most significantly when the parameter level increases from 2 to 3. At the same time, 491 

the variation of the obtained results is relatively small and the order of parameters 492 

sensitivity would not change when the parameter levels are higher than three. 493 

 494 

4.4 Compared with sobol’s 495 

 496 
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The sensitivity values for the four parameters in GR4J model from the subsampling 497 

ANOVA (i.e. single-subsampling, multiple-subsampling and full-subsampling) and 498 

sobol’s are discussed above. To compare the subsampling ANOVA and sobol’s methods 499 

further, the deviations for parameter sensitivity values and the calculation cost are 500 

presented in Figure 12 and Table 3. There are significant differences between the 501 

deviations obtained with different subsampling ANOVA methods. The large deviations 502 

(> 0.08) are obtained with 2225, 2255 and 2525, meanwhile small deviations (< 0.01) 503 

are obtained with 3333, 4444, and 5555. Except for 2222, other full-subsampling 504 

schemes perform very well in the sensitivity analysis of GR4J model parameters. 505 

Therefore, in order to get reliable parameter sensitivity results, the three or more 506 

parameter levels in the full-subsampling ANOVA approach are recommended. 507 

 508 

In this GR4J model study, 3 million random samples are applied in sobol’s in order to 509 

get a stable result of the parameters sensitivities. So totally, the GR4J model need to 510 

run 3000000*(5+2) times, which is a very large computational requirement. However, 511 

the subsampling ANOVA methods can significantly reduce the calculation 512 

requirements while achieve similar calculation accuracy in GR4J model. For example, 513 

in full-sampling "4444" where the deviation is only 0.0006, the model only need to run 514 

256 times (256=4*4*4*4). Similar with section 3.4, for the four parameters conceptual 515 

model, 1296 sets variance results can be obtained through subsampling process where 516 

1296= 2 2 2 2

4 4 4 4C *C *C *C   and 
2

4

4*3
C 6

2*1
= =  . The final sensitivity results obtained by 517 
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averaging and homogenizing the 1296 sets of variance. Through reducing the number 518 

of model runs, the subsampling ANOVA methods are effective and feasible sensitivity 519 

analysis methods with relatively low computational requirements.  520 

 521 

6、Conclusions and discussions. 522 

 523 

Three kinds of subsampling-ANOVA schemes (single-, multiple- and full-subsampling) 524 

have been proposed and analyzed in this study. The applicability of different 525 

subsampling ANOVA schemes are illustrated through one simplified model and a 526 

rainfall-runoff conceptual model. To evaluate the performance of different subsampling 527 

ANOVA schemes, the traditional sobol’s method is also used as benchmark in the study. 528 

The main purpose is to investigate the influence of different subsampling ANOVA 529 

schemes on sensitivity analyses results. Based on the case studies, some findings can 530 

be concluded: 531 

 532 

1) The subsampling effectively diminishes the bias introduced by the biased variance 533 

estimator. In the application of subsampling ANOVA method, the parameter’s 534 

individual sensitivity is related to the subsampling scheme. The subsampling process 535 

will reduce the subsampled parameter’s individual sensitivity and increase the non-536 

subsampled parameter’s individual sensitivity. In other words, the difference of 537 
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sampling densities among parameters has great influence on quantification of 538 

parametric sensitivities in hydrologic modeling. 539 

 540 

2) For full–subsampling ANOVA method, the deviation decreased with the parameters 541 

levels increased. The variation of the obtained parameters sensitivities is small and the 542 

order of parameters influences (i.e. sensitivity) would not change for three 3 or more 543 

parameter levels. 544 

 545 

3) Compared with sobol’s method, the subsampling ANOVA methods can significantly 546 

reduce the calculation requirements while achieve similar calculation accuracy. 547 

Particularly, in order to get reliable parameter sensitivity results, the full-subsampling 548 

scheme is necessary, and the 3 or more parameter levels are recommended.  549 

 550 

In this study, the sobol’s method is considered as the benchmark to evaluate the 551 

performance of the developed subsampling ANOVA approaches. Even though the 552 

subsampling ANOVA approaches may not produce better results than the sobol’s 553 

method, the proposed subsampling ANOVA approaches, especially for the full-554 

subsampling ANOVA method, have their own essential strengths. Firstly, the sobol’s  555 

algorithm has high computational cost and the number of model evaluations required 556 

for the sobol’s indices to converge increases rapidly with the number of parameters, 557 

making its efficiency questionable for complex hydrological models (Herman et al., 558 
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2013, Zhang et al., 2013, Khorashadi Zadeh et al., 2017, Shin et al., 2013). In 559 

comparison, the subsampling ANOVA approaches can effectively reduce the 560 

computational demands and generate reliable results (as shown in Table 1 and Table 3). 561 

The number of model evaluations is equal to the number of combinations with all the 562 

parameter levels. However, as indicated in this paper, the full-subsampling ANOVA 563 

approach can generate acceptable results with three or four levels for each parameter. 564 

Thus, the computational cost would be reduced greatly. Secondly, besides sensitivity 565 

analysis for parameters with continuous values (Qi et al., 2016c), the single-566 

subsampling ANOVA algorithms has already been applied to analyze the sensitivity of 567 

discrete or non-numeric elements such as the statistical post processing scheme, 568 

precipitation products and the hydrological model (Bosshard et al., 2013, Qi et al., 569 

2016a, Qi et al., 2016b). Consequently, the developed multiple-/full-subsampling 570 

ANOVA approaches can also handle with sensitivity analysis for both numeric and 571 

non-numeric variables. However, the sobol’s approach can only deal with numeric 572 

variables.  573 

 574 

The approaches proposed in this study just serve as a first basis for the application of 575 

subsampling ANOVA in hydrological model sensitivity analysis under multiple 576 

uncertainties. The number of levels would probably be higher to ensure robustness with 577 

a more complex model. The subsampling ANOVA algorithms can not only reduce the 578 

computing cost greatly, but also analyze the sensitivity of discrete or non-numeric 579 
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elements. Further research is encouraged to examine the applicability of the 580 

subsampling ANOVA approaches in other non-numeric elements sensitivity analysis.  581 
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