References
Aghaie, E., Pazouki, M., Hosseini, M. R., Ranjbar, M., & Ghavipanjeh, F. (2009). Response surface methodology (RSM) analysis of organic acid production for Kaolin beneficiation by Aspergillus niger. Chemical Engineering Journal, 147 (2-3), 245-251.
Azevedo, D. L. L., Santos, D. R. H., Vieira, d. Q. M., Gomes, F. L., & Batista, d. S. W. (2018). Screening of Yeasts Isolated from Brazilian Environments for the 2-Phenylethanol (2-PE) Production.Biotechnology & Bioprocess Engineering, 23 (3), 326-332.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76 (5), 0-977.
Cárdenas-Fernández, M., López, C., álvaro, G., & López-Santín, J. (2012). l-Phenylalanine synthesis catalyzed by immobilized aspartate aminotransferase. Biochemical Engineering Journal, 63 (none), 15-21.
Diniz, R. H. S., Rodrigues, M. Q. R. B., Fietto, L. G., Passos, F. M. L., & Silveira, W. B. (2013). Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3.Biocatalysis and Agricultural Biotechnology, 3 (2), 111-117.
Eshkol, N., Sendovski, M., Bahalul, M., Kashi, Y., & Fishman, A. (2015). Production of 2-phenylethanol from L-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. Chemical Engineering Journal, 259 (45), 795–805.
Etschmann, M., Bluemke, W., Sell, D., & Schrader, J. (2002). Biotechnological production of 2-phenylethanol. Applied Microbiology & Biotechnology, 59 (1), 1-8.
Feng, L., Wang, M., Wang, J., Zang, S., Xia, W., & Sheng, L. (2015). Isolation of 2-phenylethanol biosynthesis related genes and their relationship with 2-phenylethanol accumulation in Rosa rugosa.Acta Physiologiae Plantarum, 37 (12), 256.
Ferreira, P. G., da Silveira, F. A., Vieira dos Santos, R. C., Andre Genier, H. L., Santos Diniz, R. H., Ribeiro Junior, J. I., . . . da Silveira, W. B. (2015). Optimizing ethanol production by thermotolerant Kluyveromyces marxianus CCT 7735 in a mixture of sugarcane bagasse and ricotta whey. Food Science and Biotechnology, 24 (4), 1421-1427.
Hua, D., & Xu, P. (2011). Recent advances in biotechnological production of 2-phenylethanol. BIotechnology Advances, 29 (6), 654-660.
Huang, C. J., Lee, S.-L., & Chou, C.-C. (2001). Production of 2-phenylethanol, a flavor ingredient, by Pichia fermentans L-5 under various culture conditions. Food Research International, 34 (4), 0-282.
Isar, J., Agarwal, L., Saran, S., & Saxena, R. K. (2006). A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions. Bioresource Technology, 97 (13), 1443-1448.
Karolina, C., Katarzyna, S. M., Daria, K. P., & Jolanta, M. (2017). Screening of yeasts for the production of 2-phenylethanol (rose aroma) in organic waste-based media. Letters in Applied Microbiology .
Kim, B., Cho, B.-R., & Hahn, J.-S. (2014). Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnology and Bioengineering, 111 (1), 115-124.
Livak, K., & Schmittgen, T. (2000). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△Ct Method.Methods, 25 (4).
Masuo, S., Osada, L., Zhou, S., Fujita, T., & Takaya, N. (2015). Aspergillus oryzae pathways that convert phenylalanine into the flavor volatile 2-phenylethanol. Fungal Genetics and Biology, 77 , 22-30.
Mu, L., Hu, X., Liu, X., Zhao, Y., & Xu, Y. (2014). PRODUCTION OF 2-PHENYLETHANOL BY MICROBIAL MIXED CULTURES ALLOWS RESOURCE RECOVERY OF CANE MOLASSES WASTEWATER. Fresenius Environmental Bulletin, 23 (6), 1356-1365.
Papon, N., Savini, V., Lanoue, A., Simkin, A. J., Creche, J. l., Giglioli-Guivarca’h, N., Clastre, M., Courdavault, V., Sibirny, A. A. (2013). Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Current Genetics, 59 (3), 73-90.
Perdiguero, P., Collada, C., Barbero, M. d. C., Casado, G. G., Cervera, M. T., & Soto, á. (2012). Identification of water stress genes in Pinus pinaster Ait. by controlled progressive stress and suppression-subtractive hybridization. Plant Physiology and Biochemistry, 50 (none), 44-53.
Schrader, J., Etschmann, M. M. W., Sell, D., Hilmer, J. M., & Rabenhorst, J. (2004). Applied biocatalysis for the synthesis of natural flavour compounds - Current industrial processes and future prospects.Biotechnology Letters, 26 (6), 463-472.
Scognamiglio, J., Jones, L., Letizia, C. S., & Api, A. M. (2012). Fragrance material review on phenylethyl alcohol. Food and Chemical Toxicology, 50 (supp_S2), S224-S239.
Seward, R., Willetts, J. C., Dinsdale, M. G., & Lloyd, D. (1996). THE EFFECTS OF ETHANOL, HEXAN-1-OL, AND 2-PHENYLETHANOL ON CIDER YEAST GROWTH, VIABILITY, AND ENERGY STATUS; SYNERGISTIC INHIBITION.Journal of the Institute of Brewing, 102 (6), 439-443.
Shen, L., Nishimura, Y., Matsuda, F., Ishii, J., & Kondo, A. (2016). Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose. Journal of Bioscience and Bioengineering, 122 (1), 34-39.
Shrawder, E., & Martinez-Carrion, M. (1972). Evidence of phenylalanine transaminase activity in the isoenzymes of aspartate transaminase.Journal of Biological Chemistry, 247 (8), 2486-2492.
Sikkema, J., de Bont, J. a., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological reviews, 59 (2), 201-222.
Stark, D. (2003). In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Advances in Biochemical Engineering Biotechnology, 80 .
Stark, D., Münch, T., Sonnleitner, B., Marison, I. W., & Stockar, U. V. (2002). Extractive Bioconversion of 2-Phenylethanol from L-Phenylalanine by Saccharomyces cerevisiae. Biotechnology Progress, 18 (3), 514-523.
Stark, D., Zala, D., Münch, T., Sonnleitner, B., Marison, I. W., & Stockar, U. v. (2003). Inhibition aspects of the bioconversion of l-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae.Enzyme and Microbial Technology, 32 (2), 212-223.
Weber, F. J., & Bont, J. A. M. d. (1996). Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes.Biochimica et Biophysica Acta, 1286 (3), 225-245.
Yin, S., Zhou, H., Xiao, X., Lang, T., Liang, J., & Wang, C. (2015). Improving 2-Phenylethanol Production via Ehrlich Pathway Using Genetic EngineeredSaccharomyces cerevisiaeStrains. Current Microbiology, 70 (5), 762-767.