Acknowledgements
This work is funded by the Natural Science Foundation of China (51279045), and partly funded by the key project of Nanjing Hydraulic Research Institute (NHRI) (No.Y919005). Helmholtz Centre for Environmental Research – UFZ is acknowledged for providing a free license for FEFLOW 7.0.
Data Availability Statement
The data that support the findings of this study are available from the authors, including the measured and modelled water level and temperature and some concentration distributions that not provided in the manuscript, which can be seen in the following links (extraction code: mtzc):https://pan.baidu.com/s/1zchXqUTZ8risA5y1fUG4eg. The data of M in-NO3, M rem- NO3 and N rem-NO3 in each case are not included, because they are processed by the model and shown in Tables.

References

Bardini, L., Boano, F., Cardenas, M. B., Revelli, R., & Ridolfi, L. (2012). Nutrient cycling in bedform induced hyporheic zones.Geochimicaet Cosmochimica Acta, 84 , 47-61.
Boutt, D. F. (2010). Poroelastic loading of an aquifer due to upstream dam releases. Groundwater, 48 (4), 580-592.
Cardenas, M. B. (2009). Stream-aquifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Resources Research, 45 (6), 267-272.
Carsel, R. F., & Parrish, R. S. (1988). Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 24 (5), 755-769.
Daniele, T., Buffington, J. M. (2007). Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling. Water Resources Research, 430 (1), 208-214.
Diersch, H. J. (2014). Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Berlin, p , 996.
Duff, J. H., & Triska, F. J. (2011). Denitrification in sediments from the hyporheic zone adjacent to a small forested stream. Canadian Journal of Fisheries and Aquatic Sciences, 47 (6), 1140-1147.
Fetter, C. (2000). Applied Hydrogeology (4th). Upper Saddle River, NJ: Prentice Hall, 598.
Gardner, L. R., & Wilson, A. M. (2006). Comparison of four numerical models for simulating seepage from salt marsh sediments.Estuarine, Coastal and Shelf Science, 69 (3-4), 427-437.
Gu, C., Hornberger, G. M., Mills, A. L., Herman, J. S., & Flewelling, S. A. (2007). Nitrate reduction in streambed sediments: Effects of flow and biogeochemical kinetics. Water Resources Research, 43 (12), 553-566.
Gu, C., Anderson, W., & Maggi, F. (2012). Riparian biogeochemical hot moments induced by stream fluctuations. Water Resources Research, 48 (9), W09546.
Hou, L., Yin, G., Liu, M., Zhou, J., Zheng, Y., Gao, J., & Tong, C. (2014). Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environmental science & technology, 49(1) , 326-333.
Hu, H., Binley, A., Heppell, C. M., Lansdown, K., & Mao, X. (2014). Impact of microforms on nitrate transport at the groundwater-surface water interface in gaining streams. Advances in Water Resources, 73 , 185-197.
Lee, M. S., Lee, K. K., Hyun, Y., Clement, T. P., & Hamilton, D. (2006). Nitrogen transformation and transport modeling in groundwater aquifers. Ecological modelling, 192 (1-2), 143-159.
Liu, D., Zhao, J., Chen, X., Li, Y., & Feng, M. (2018). Dynamic processes of hyporheic exchange and temperature distribution in the riparian zone in response to dam-induced water fluctuations. Geosciences Journal, 22 (3), 1-11.
Liu, D., Zhao, J., Jeon, W. H., & Lee, J. Y. (2019). Solute dynamics across the stream-to-riparian continuum under different flood waves.  Hydrological Processes, 33 (20), 2627-2641.
Liu, D. (2019). Hyporheic exchange and solute transport and transformation driven by flood wave. Hohai University.
Molz, F. J., Widdowson, M. A., & Benefield, L. D. (1986). Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media. Water Resources Research, 22 (8): 1207-1216.
Orghidan, T. (1959). Einneuer Lebensraum des unterirdischen Wassers: der hyporheischeBiotop. Arch. Hydrobiol, 55 (5), 392-414.
Rawls, W. J., Brakensiek, D. L., & Saxton, K. E. (1982).Estimating soil water properties. Transactions, ASAE, 25 (5), 1316-1320, 1328.
Reeves, H. W., & Thibodeau, P. M. (2000). Underwood R G, et al. Incorporation of total stress changes into the ground water model SUTRA.Groundwater, 38 (1), 89-98.
Schenk, O., & Gärtner, K. (2004). Solving unsymmetric sparse systems of linear equations with pardiso. Future Generation Computer Systems, 20 (3), 475-487.
Schulze-Makuch, D. (2005). Longitudinal dispersivity data and implications for scaling behavior. Groundwater, 43 (3), 443-456.
Shuai, P., Cardenas, M. B., Knappett, P. S. K., Bennett, P. C., & Neilson, B. T. (2017). Denitrification in the banks of fluctuating rivers: the effects of river stage amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow. Water Resources Research, 53 (9), 7951-7967.
Siergieiev, D., Ehlert, L., Reimann, T., Lundberg, A., & Liedl, R. (2015). Modelling hyporheic processes for regulated rivers under transient hydrological and hydrogeological conditions. Hydrology and Earth System Sciences, 19 (1), 329-340.
Trauth, N., Musolff, A., Knöller, K., Kaden, U. S., Keller, T., & Werban, U. (2017). River water infiltration enhances denitrification efficiency in riparian groundwater. Water Research, 130 , 185-199.
Voss, C. I. (1984). A finite element simulation model for saturated-unsaturated, fluid-density-dependent groundwater flow with energy transport or chemically reactive single-species solute transport.Water Resources Investigations Report (USA), 84, 4369.
Xia, J., Chen, Y., Wang, W., Han, Y., Liu, H., & Hu, L. (2013). Dynamic processes and ecological restoration of hyporheic layer in riparian zone. Advances in Water Science, 24 (4), 1-10.
Zarnetske, J. P., Haggerty, R., Wondzell, S. M., Bokil, V. A., & González-Pinzón, R. (2012). Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones. Water Resources Research, 48 (11), W11508.
Zhang, L., Wang, S., & Wu, Z. (2014). Coupling effect of pH and dissolved oxygen in water column on nitrogen release at water-sediment interface of Erhai Lake, China. Estuarine Coastal & Shelf Science, 149 , 178-186.