Acknowledgements
This work is funded by the Natural Science Foundation of China
(51279045), and partly funded by the key project of Nanjing Hydraulic
Research Institute (NHRI) (No.Y919005). Helmholtz Centre for
Environmental Research – UFZ is acknowledged for providing a free
license for FEFLOW 7.0.
Data Availability Statement
The data that support the findings of this study are available from the
authors, including the measured and modelled water level and temperature
and some concentration distributions that not provided in the
manuscript, which can be seen in the following links (extraction code:
mtzc):
https://pan.baidu.com/s/1zchXqUTZ8risA5y1fUG4eg.
The data of
M in-NO3,
M rem-
NO3 and
N rem-NO3 in each case are not included,
because they are processed by the model and shown in Tables.
References
Bardini, L., Boano, F., Cardenas, M. B., Revelli, R., & Ridolfi, L.
(2012). Nutrient cycling in bedform induced hyporheic zones.Geochimicaet Cosmochimica Acta, 84 , 47-61.
Boutt, D. F. (2010). Poroelastic loading of an aquifer due to upstream
dam releases. Groundwater, 48 (4), 580-592.
Cardenas, M. B. (2009). Stream-aquifer interactions and hyporheic
exchange in gaining and losing sinuous streams. Water Resources
Research, 45 (6), 267-272.
Carsel, R. F., & Parrish, R. S. (1988). Developing joint probability
distributions of soil water retention characteristics. Water
Resources Research, 24 (5), 755-769.
Daniele, T., Buffington, J. M. (2007). Hyporheic exchange in gravel bed
rivers with pool-riffle morphology: Laboratory experiments and
three-dimensional modeling. Water Resources Research, 430 (1),
208-214.
Diersch, H. J. (2014). Finite element modeling of flow, mass and heat
transport in porous and fractured media. Springer, Berlin, p ,
996.
Duff, J. H., & Triska, F. J. (2011). Denitrification in sediments from
the hyporheic zone adjacent to a small forested stream. Canadian
Journal of Fisheries and Aquatic Sciences, 47 (6), 1140-1147.
Fetter, C. (2000). Applied Hydrogeology (4th). Upper Saddle River,
NJ: Prentice Hall, 598.
Gardner, L. R., & Wilson, A. M. (2006). Comparison of four numerical
models for simulating seepage from salt marsh sediments.Estuarine, Coastal and Shelf Science, 69 (3-4), 427-437.
Gu, C., Hornberger, G. M., Mills, A. L., Herman, J. S., & Flewelling,
S. A. (2007). Nitrate reduction in streambed sediments: Effects of flow
and biogeochemical kinetics. Water Resources Research, 43 (12),
553-566.
Gu, C., Anderson, W., & Maggi, F. (2012). Riparian biogeochemical hot
moments induced by stream fluctuations. Water Resources
Research, 48 (9), W09546.
Hou, L., Yin, G., Liu, M., Zhou, J., Zheng, Y., Gao, J., & Tong, C.
(2014). Effects of sulfamethazine on denitrification and the associated
N2O release in estuarine and coastal sediments. Environmental
science & technology, 49(1) , 326-333.
Hu, H., Binley, A., Heppell, C. M., Lansdown, K., & Mao, X. (2014).
Impact of microforms on nitrate transport at the groundwater-surface
water interface in gaining streams. Advances in Water
Resources, 73 , 185-197.
Lee, M. S., Lee, K. K., Hyun, Y., Clement, T. P., & Hamilton, D.
(2006). Nitrogen transformation and transport modeling in groundwater
aquifers. Ecological modelling, 192 (1-2), 143-159.
Liu, D., Zhao, J., Chen, X., Li, Y., & Feng, M. (2018). Dynamic
processes of hyporheic exchange and temperature distribution in the
riparian zone in response to dam-induced water
fluctuations. Geosciences Journal, 22 (3), 1-11.
Liu, D., Zhao, J., Jeon, W. H., & Lee, J. Y. (2019). Solute dynamics
across the stream-to-riparian continuum under different flood
waves. Hydrological Processes, 33 (20), 2627-2641.
Liu, D. (2019). Hyporheic exchange and solute transport and
transformation driven by flood wave. Hohai University.
Molz, F. J., Widdowson, M. A., & Benefield, L. D. (1986). Simulation of
microbial growth dynamics coupled to nutrient and oxygen transport in
porous media. Water Resources Research, 22 (8): 1207-1216.
Orghidan, T. (1959). Einneuer Lebensraum des unterirdischen Wassers: der
hyporheischeBiotop. Arch. Hydrobiol, 55 (5), 392-414.
Rawls, W. J., Brakensiek, D. L., & Saxton, K. E. (1982).Estimating soil water properties. Transactions, ASAE, 25 (5),
1316-1320, 1328.
Reeves, H. W., & Thibodeau, P. M. (2000). Underwood R G, et al.
Incorporation of total stress changes into the ground water model SUTRA.Groundwater, 38 (1), 89-98.
Schenk, O., & Gärtner, K. (2004). Solving unsymmetric sparse systems of
linear equations with pardiso. Future Generation Computer
Systems, 20 (3), 475-487.
Schulze-Makuch, D. (2005). Longitudinal dispersivity data and
implications for scaling behavior. Groundwater, 43 (3), 443-456.
Shuai, P., Cardenas, M. B., Knappett, P. S. K., Bennett, P. C., &
Neilson, B. T. (2017). Denitrification in the banks of fluctuating
rivers: the effects of river stage amplitude, sediment hydraulic
conductivity and dispersivity, and ambient groundwater flow. Water
Resources Research, 53 (9), 7951-7967.
Siergieiev, D., Ehlert, L., Reimann, T., Lundberg, A., & Liedl, R.
(2015). Modelling hyporheic processes for regulated rivers under
transient hydrological and hydrogeological conditions. Hydrology
and Earth System Sciences, 19 (1), 329-340.
Trauth, N., Musolff, A., Knöller, K., Kaden, U. S., Keller, T., &
Werban, U. (2017). River water infiltration enhances denitrification
efficiency in riparian groundwater. Water Research, 130 , 185-199.
Voss, C. I. (1984). A finite element simulation model for
saturated-unsaturated, fluid-density-dependent groundwater flow with
energy transport or chemically reactive single-species solute transport.Water Resources Investigations Report (USA), 84, 4369.
Xia, J., Chen, Y., Wang, W., Han, Y., Liu, H., & Hu, L. (2013). Dynamic
processes and ecological restoration of hyporheic layer in riparian
zone. Advances in Water Science,
24 (4), 1-10.
Zarnetske, J. P., Haggerty, R., Wondzell, S. M., Bokil, V. A., &
González-Pinzón, R. (2012). Coupled transport and reaction kinetics
control the nitrate source-sink function of hyporheic zones. Water
Resources Research, 48 (11), W11508.
Zhang, L., Wang, S., & Wu, Z. (2014). Coupling effect of pH and
dissolved oxygen in water column on nitrogen release at water-sediment
interface of Erhai Lake, China. Estuarine Coastal & Shelf
Science, 149 , 178-186.