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[bookmark: introduction]Introduction 
In many applicability, as in econometrie or seismology, the assumption of independence between the variables observed is not realistic. For that, it is necessary to introduce a probabilistic structure which makes it possible to control the dependence between the variables, the method is to make the assumption of mixture.
in this paper, we consider the method of K nearest neighbor for the estimate of the conditional hazard function in case  mixing data which depend of number of neighbors at the point of interest at with we want to make a prediction. On the contrary, the traditional estimate of the function depend on the real valued non random bandwidth sequence  (see ).
We introduce in this article the method and assumptions used in section 2, after we propose in section 3 the almost complete convergence and the almost complete convergence rate. We present in section 4, some technical tools, finally we show the proof in section 5.
[bookmark: method-and-assumptions]Method and assumptions
Let  be  dependent sequence identically distributed as , the latter being a random pair with values in the measurable space . Where  is a semi metric space and  is the  algebra generated bu the topology of  that is defined by by the semi-metric d, and B is the Borel  algebra.
For , we define the K-nn kernel estimate of the conditional hazard function by:

with: : is the kernel estimator of the conditional distribution function given by:

where  is an asymmetrical kernel,  is the bandwith that is defined as:

 is a distribution function and  is a sequence of positive real numbers (depending on n).
 is the kernel estimate of the conditional density function define by:

To prove the almost complete convergence of the K-nn estimator of the conditional hazard function and to emphasis difference between the K-nn method and the traditional kernel approach, we need some results of Ferraty et al  by:

with:

and:

Where  is a kernel,  is a distribution function and  is a non-random bandwith.
Before giving the main asymptotic result, we need some assumptions. The first one is about the probability of observing the functional random variable X around x:

· We also need to kernel :
 is a kernel of type I, so that: there exist two real constants ; such that;

· 
 is a kernel of type II, so that: the support of  is  and if its derivative  exists on  and satisfies; for two real constants ;

· 
If  is a kernel of type II and if  satisfies: :

· Assume that the conditional moment of the response random variable  is bounded:

· with  continuous on x.
· The sequence  is said to be -mixing if:

· where:  is the  algebra generated by .
·  is arithmetically (or equivalently algebraically ) -mixing with rate  if:

· We note the term of covariance by:


· where:

· By lemma 10.3, see , we remark, if the  are -mixing then also the  are -mixing.
· Assume that for , the rate of the -mixing b: there exists  such that

· We need the following additional assumptions on the distribution of two distinct pair  and , we assume that

· and the joint distribution function:

· satisfy:

· where:

· Define , and  with  is the mixing coefficient. Then assume that:

[bookmark: asymptotic-properties-of-k-nn-method]Asymptotic properties of K-nn method
We are interested in this section, by the almost complete convergence [footnoteRef:24] and rate of convergence [footnoteRef:25] of the functional kernel estimator of the conditional hazard function , where here  is a sequence of -mixing random variables (see ).
Before studying the K-nn estimator, we remind asymptotic properties of  define in (???), Rabhi et al. , proved the almost complete convergence of this estimator: [24:  Let  be a sequence of the real variable. We say that  converge almost completely to (X) if and only if:.]  [25:  We say that  if and only if: , such that, .] 

Theorem Under the “continuity type”, suppose (H1), (H2), (H6), (H8), then we have:

Theorem Under the “Lipschitz”Lipschitz type" model and the hypotheses (H1), (H2), (H3), (H5),(H8), we have:

Now, we state the almost complete convergence result for nonparametric K-nn method estimate define in (???) which the proof is postponed to the appendix.
Theorem
Under the “continuity type” model and the hypotheses(H1), (H2), (H4), (H8), then we have:

Theorem
Assume that (H1), (H2), (H4), (H8) are verified,and under the “continuity type” then:

[bookmark: general-technical-tools]General technical tools
Let  be a sequence of random variables with values in , not necessarily identically distributed or independent, let  a measurable function such that: 

Collomb 1980-Burba 2008
Let  be a sequence of real random variables and  be a decreasing sequence of positive numbers.
If , and if, for all increasing sequences  , there exist two sequences of real random variables  and :
· : , and  a.co.
· : 
· : Assume there exists a real positive number  such that:


Then:

If l=0 and if (L1), (L2), (L3) hold for any increasing sequence  with limit 1, the same result holds.
Burba 2008
Let  be a sequence of real random variables and  be a decreasing positive sequence.
If , and if, for all increasing sequences  , there exist two sequences of real random variables  and :
· : , and  a.co.
· : 
· : Assume there exists a real positive number  such that:


Then:

If l’=0 and if (L’1), (L’2), (L’3) hold for any increasing sequence  with limit 1, the same result holds.
Burba use in their consistency proof of the k.n.n. kernel estimate for independent data Chernoff-type exponential inequality to check conditions  or .
Let  be a valued random vector in  such that  for some  Let d a real number such that  and . Then there exists a random variable  such that:
·  and  is independent of .
· , where  is the -algebra generated by .
Let  a arithmetically  mixing sequence in the semi metric space  with , b and . Define .then we have:

where  and .
[bookmark: asymptotic-normality]Asymptotic normality
This section contain results on the asymptotic normality of . For this, we need the followings notations:

where:



Where  is a kernel,  is a distribution function and  is a sequence of positive real numbers. Laksaci and Mechab  defined the preceding estimators by:

where:



Theorem Assume that (H1), (H4), (H5), (H7), (H8) hold, then for any , we have:

where


 means the convergence in distribution.
It is easy ti see that, if one impose some regularity assumptions on the real function , we can give explicitly the asymptotic behavior on the term . However, to remove the bias term  from Theorem ???.
under the hypotheses of ???, we have:

Proof of theorem???: We consider the following decomposition:


Therefore, the theorem is a sequence of the following lemmas:
Under the hypotheses of theorem ???, we have:

where

Under the hypotheses of theorem ???, we have:


where

and

Under the hypotheses of theorem ???, we have:


[bookmark: a-simulation-study]A Simulation study
In this section we will show the effectiveness of -NN method compared to the kernel estimation using simulated data. For this we considered a sample of a diffusion process on interval ,  and , where  is the standard normal distribution and take , where  is random variable Bernoulli distributed. We carried out the simulation with -sample of the curve  which is represented by the following
For the scalar response variable, we took  where  (resp. ) is the nonlinear regression model , with  is  (resp.  is the null function) and  is an -mixing process generated by this model:

with  is normally independent identically distributed random variables. We generated standard normal distributed random variable  independently of .
We choose a quadratic kernel  defined by:

In practice, the semi-metric choice is based on the regularity of the curves . For this we use the semi-metric defined by -distance between the  derivatives of the curves. In order to evaluate the MSE (Mean Square Error) we proceed by the following algorithm:
· Step 1.  We split our data into two subsets; the first sample, of size n=120 corresponds to the learning sample which will be used, as a sample, to compute our conditional hazard function estimators for the 80 remaining curves ( considered as the test sample).
·  learning sample,
·  test sample.
· Step 2.
· We use the learning sample for computing the hazard function estimator , for all .
· We set: .
· We put: 
·  for kernel method.
 for -NN method,
· where:
· : is the nearest curve to 

· with:

· and:

· Step 3. The error used to evaluate this comparison is the mean of square error () expressed by

· where  designate the estimator used: kernel or -NN method estimation and  is the true hazard function.
Consequently, the -NN method gives better results than the kernel method. This is confirmed by the MSE--NN= 2.170035 and MSE-Kernel = 13.66790.
[bookmark: real-data-application]Real data application
To highlight the efficiency and robustness of the method of  nearest neighbors with respect to the kernel method in estimating the conditional hazard function, we will test these two methods in the presence or not of heterogeneous data.
To do this, based on the study of Burba et al. (2009) which emphasizes the effect of the nature of the data (homogeneous or heterogeneous ) on the quality of the estimate, especially the superiority of the k-nearest neighbors in the presence of very heterogeneous data.
For this purpose, we apply the described algorithm used in the simulation study to El Ni time series which gives monthly Sea Surface temperatures. More information and other data-sets can be found about the phenomenon called El Ni in web site http://www.cpc.ncep.noaa.gov/data/indices
(see also:http://kdd.ics.uci.edu/databases/elnino/elnino.data.html). Our study concerns the monthly time series of the Sea Surface Temperature (SST) from June,  up to May, .
A useful way to display such a time series consists in cutting it into 54 pieces or 54 “annual curves” (see Fig. 1). More precisely, let  be our El Nio time series. We can build, for , the following subsequences:   corresponding to the variations of the SST at the  year.
The sample of size 54 was splitted into learning sample of size 44 (with all data), 30 (without the heterogeneous data, 14 values) and testing sample of size 10. Figue ??? displays the curves of learning sample for all data and the curves of learning sample without the heterogeneous one.
We plot the conditional hazard function estimated for the first 3 values of testing sample, Figure ??? depicts that the -NN method in presence of heterogeneous data give better estimation of the conditional hazard function prediction (regular function) than the kernel method estimation (non-regular function) and when the data are homogeneous the two method give the same result that can be easily seen in Figure ???.
[bookmark: appendix]Appendix
Proof of Theorem ??? We consider the following decomposition:

and our proof is finished to verify the following results:



proof of result ???:
To prove this result, we apply Lemma ??? with:

Choose ,  and  such that:

Then we define

FERRATY VIEU () proved under the conditions of Theorem ??? that:

and to apply this result, we have show that the covariance term  fulfills following condition:  such that:

with b is the rate of mixing coefficient. If the condition on the rate b of the mixing coefficient and () hold, we have by lemma 11-5 in ():

and it is true for , then ??? is holds.
Now we can apply the result ???, then we obtain:

and

Thus condition  is verified.
In parallel Ferraty and Vieu () proved that:

under the conditions (???) and (???), we have:

we get:

so that  is checked.
Finally, we prove : The first part is obvious, and the second one that, :

Let , we know that;

We start by , then we have:


The second step, we centred the random variable, then the plan here is to split the data into a block schema and we applique lemma ???; we devise the set  into blocks of length , set  where  is the Gaussian bracket [footnoteRef:31] and .
Let [31:  ] 


and we define:



thus, we obtain in ???.

Now, we apply Lemma ??? in the first term of ??? with:
·  lead to 
· 
· 
and we can construct  such that:
· the random variables  are independent
·  have a same distribution as .
then:

with  this leads to:



and by applying lemma ??? in the second term of ???, and some calculation we obtain:



we choose the sequence  such that:

with:  is a positive constant, , and by the condition of the mixing coefficient b, we obtain:

consequently, we get the second term of ??? is finite,finite, then:

Let turn to the first term of ??? and apply Markov inequality for some , we obtain:


Applying:

we get:

we evaluate the expectation, for this note that:

and after the calculations while we applying:

then

We apply now Lemma ??? with:  and , then: 
under :

and under :

finally, we obtain from ??? with  and 


because:


and thereafter of ???, we conclude that:

Same way, we can show that:

Now,it is enough for us to show:

We know that:

and by the definition of  in ??? and  we obtain

Consequently we have:

While following the same step to prove that

then  is verified.
Proof of result ???:
To prove this result, we use the steps of proof of result ??? with:


and the result proved by Ferraty and Vieu()

Proof of result ???:
It is clear that:

turning now, to the term of probability, we obtain:


For the second term, by result ???, we have

then; for , we obtain:

Proof of Theorem ???
We consider the decomposition (???), and the proof of this Theorem is a consequence of this results:


ProofProof of result (???):
To prove this result, we use Lemme 1. Choose  as an increasing sequence in  with limit 1. Furthermore, we choose  and  under (???), Ferraty and Vieu proved under the conditions of Theorem 3 that:

with

then

If  holds then:


the same is true for the bandwidth .
And if  holds:

under the same choice of  and  as above, we have:

we get:

so that,  is checked. Now wear able to apply Theorem ???, we obtain:


and  is verified.
Proof of result ???:
To prove this result, we use Lemma ???. Choose  as an increasing sequence in  with limit 1.
Furthermore, we choose  and  under (???) FERRATY VIEU ((missing citation)) proved under the conditions of Theorem ??? that:

with



then




Under the notations (???) and (???), we have:

Then we obtain:

then  is checked. Now, we apply (???) under (???), we get:


which leads the condition 
Proof of lemma ??? :
We pose the following notation:

To prove this lemma, we apply Lemma 4-2 in Burba et al. with:

Choose ,  and  such that:

Define

The asymptotic normality of:

was proved in Lemma 4 in  by choosing the bandwidth parameter as: .
Proof of Lemma ??? :
On the one hand, Laksaci and Mechab proved that:

with:


therefore, we use (???) under (???) and (???) and since  is bounded, we obtain:


And on the other hand:

with:


Then under the notations:

and (???), (???):


Proof of lemma ??? :
Under (???), Ferraty and Vieu in  proved that:

To establish the convergence in probability of denominator, we consider the following decomposition under the notation (???):


concerning the first term; Ferraty and Vieu showed that:

and the second term, under (???), ???), observe that:

on the other hand, by applying the result (6-19) of , we obtain:
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