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Abstract—It is known that the Central Limit Theorem (CLT)
is not always the most appropriate tool for deriving closed-form
expressions. We evaluate a Single-Input Single-Output (SISO)
system performance in which the Large Intelligent Surface (LIS)
acts as a scatterer. The direct link between the transmitting
and receiving devices is negligible. Quantization phase errors
are considered since the high precision configuration of the
reflection phases is not always feasible. We derive exact closed-
form expressions for the spectral efficiencies, outage probabilities,
and average symbol error rate (SER) of different modulations.
We assume a more comprehensive scenario in which b bits
are dedicated to the LIS elements’ phase adjustment. From
Monte Carlo simulations, we prove the excellent accuracy of
our approach and investigate the behavior of power scaling law
and power required to reach a specific capacity, depending on
the number of reflecting elements. We show that the LIS with
approximately fifty elements and four dedicated bits for phase
quantization outperforms the conventional system performance
without LIS.

Index Terms—LIS, outage probability, quantization phase
errors, spectral efficiency, symbol error rate.

I. INTRODUCTION

There are no doubts that there are quantization errors.
After all, they are inevitable when using the analog-to-digital
converter (ADC). The famous converters bridge the analog
world with the digital world. And the lower its resolution, the
more distortions it can cause to the process. So, what we have
left is to learn to deal with them. For mature systems like
MIMO, for example, there are numerous solutions proposed
to mitigate quantization errors.

Since the rounding quantization introduces error in the
signal estimate stage, Hou et al. [1] propose a quantization
error reduction scheme for detection based on orthogonal
lattices. On the other hand, Kotera et al. [2] proves that an
efficient nonlinear (Viterbi) as the equalization scheme can
estimate both inter-symbol interference in multi-path channel
and quantization error in ADC and improve the bit error rate
(BER) performance.

But for Large Intelligent Surfaces (LIS) assisted systems,
little is known. Also called Reconfigurable Intelligent Surfaces
(RIS), this technology is a strong candidate to integrate the
sixth generation (6G) of cellular networks. It consists of many
electromagnetic elements act individually as scatterers and
are capable of jointly reflecting the incident signals for the
destination in the desired direction [3]. Among its advantages,
we can mention the ideally passive nature that does not require
any dedicated energy source. By not amplifying the signal,

LIS provides an inherently full-duplex transmission without
introducing noise, unlike relays. Besides, it is easily installed
onto facades of buildings or walls of rooms thanks to the
lightweight and conformal geometry. Due to this smart adjust
of the phase shifts, the reflected signals can add coherently or
destructively at the receiver. The first strategy improves the re-
ceived signal power, while the second one avoids interference
of unwanted signals or receivers and increases the security of
the communication system [4].

Taking advantage of LIS-assisted systems’ low power con-
sumption, [5] jointly optimize the transmit beamforming at the
BS and the phase shifts at the IRS. From derived lower bounds
of the transmit power concerning the number of antennas
at the BS, the number of LIS elements, and the number of
mobile users, they show that the transmit power at the BS
is significantly lower than that of the communication systems
without LIS.

Although some studies optimize the reflection coefficients
(amplitude and phase) of each LIS element [6], the reflection
phases’ high precision configuration is unfeasible since the
number of bits is limited. As a consequence, phase quantiza-
tion errors arise. Before proposing techniques to reduce them,
we first need to know them and estimate their effects as closely
as possible to reality.

Badiu et al. do a preliminary analysis based on a limited
number of reflectors and conclude that the performance mea-
sured from the error probability is robust against the phase
errors [7]. Samith et al. [8] also consider a practical phase-
shift model, but to maximize the achievable rate through the
joint optimization of the transmit beamforming and the LIS
reflect beamforming.

On the other hand, Han et al. [9] propose an optimal phase
shift design that achieves approximately the ergodic capacity
and ensures that a quantizer with two bits is sufficient for a
capacity degradation below 1 bit/s/Hz.

As can be seen, there are many works in the literature
about the optimization of LIS-assisted systems. We deviated a
little from this idea and looked for more precise mathematical
models in the face of possible scenarios.

In our previous work [10], we have used the Central Limit
Theorem (CLT) to derive the bit error rate when there are
phase estimation errors. However, it is known that the CLT is
inaccurate when the number of elements in LIS is small, and
the approximation error can be significant in the high Signal-
to-Noise ratio (SNR) regime.

This time, we do an in-depth investigation of LIS-assisted
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Single-Input Single-Output (SISO) systems when there are
quantization errors. Considering channels between source and
destination characterized as the double (cascaded) Rayleigh
fading distributions [11]–[14], we derive exact closed-form
expressions for the spectral efficiencies, outage probabilities,
and average symbol error rate (SER). Our analysis also extends
to power scaling law and the power required to achieve
specific capacity. Based on our excellent accuracy approach,
we evaluate the system performance as the number of bits
and reflectors increases. We conclude that the LIS with ap-
proximately fifty elements and four dedicated bits for phase
quantization outperforms the conventional system performance
without LIS. To the best of our knowledge, no similar results
have been found in the literature.

Wang et al. [15] also consider a SISO LIS-assisted sys-
tem and derive exact expressions for outage probability and
diversity order without employing a CLT approach. However,
they assume that each element of LIS has only a one-bit phase
shifter. We propose expressions for a more comprehensive sce-
nario in which more bits are dedicated to the phase adjustment
of the LIS elements.

The remainder of this paper is organized as follows: Section
II presents the adopted model and the preliminary assumptions.
In Section III, we derive exact closed-form expressions for
some important performance parameters and evaluate the
quantization error effects. Section IV shows our setup and the
results obtained from it. Finally, Section V summarises the
main conclusions.

Notations: Scalars are denoted by italic letters while vectors
and matrices, by bold-face lower-case and uppercase letters,
respectively. For a complex-valued vector x, |x| denotes its
Euclidean norm and diag(x) represents the diagonal matrix.
The distribution of a circularly symmetric complex Gaussian
(CSCG) random vector with mean fx and covariance Ξ is
denoted by CN (x,Ξ); and ∼ stands for “distributed as”. For
any general vector x, xi denote its ith element while E is the
statistical expectation. Finally, Pr(.) represents the probability
of a specific event occurring.

II. SYSTEM MODEL

The system model of the adopted LIS-assisted communica-
tions scheme is shown in Fig. 1, where gn and hn represent
the fading channels between the single-antenna source (S) and
the nth antenna element of the LIS, and the nth antenna
element of the LIS and the single-antenna destination (D),
respectively. Here we assume Rayleigh fading channels, i.e.,
gn ∼ CN (0, βg) and hn ∼ CN (0, βh). The parameters βg
and βh model the shadow and geometric attenuation fading,
(i.e., the large-scale fading coefficients), which are assumed
to be independent over the elements of LIS and change very
slowly over time, being constant over several coherence-time
intervals [16]. This is a reasonable assumption since the
distance between devices and LIS is much larger than the
distance between the LIS’ elements. In this far-field regime
[3], the intelligent surface is better modeled as a scatterer and
the scaling law that governs the intensity of its electric field
is a function of the distances’ product, as proved in [17] and
shown later.
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Figure 1. System Model.

We assume that the LIS is a reflect-array composed of
N simple and re-configurable reflector elements connected
to a controller. Additionally, we assume that the phase-shifts
produced by the channels are estimated perfectly. However, the
desired phases can not be accurately generated by the LIS once
it has a discrete set of phases. Practical LISs have a limited
number of phase shifts, i.e., a discrete set of phase-shifts
constrained by the number of quantization bits (also known
as phase resolution) of the LIS. The number of quantization
bits is denoted by b. Therefore, the set of phase shifts produced
by each one of the elements of the LIS is defined as

φn =

{
0,

2π

2b
,

4π

2b
, · · · , 2π(2b − 1)

2b

}
. (1)

Therefore, we model the deviation from the correct/ideal
phase-shift as a phase-noise, δn, which is uniformly distributed
in the range [−π/Q, π/Q], where Q = 2b is the number
of discrete phases the LIS can generate [18] dictated by the
hardware complexity and power consumption of LIS.

III. INTELLIGENT TRANSMISSION THROUGH LIS

In slowly varying flat fading channels, the signal received at
the destination after being reflected through a LIS composed
of N passive elements can be written as

y =
√
ρ

[
N∑
n=1

gne
−jφnhn

]
s+ w, (2)

where ρ is the average SNR, φn is the adjustable phase-shift
produced by the nth LIS reflector, s is the modulation data
symbol with zero mean, E[|s|2] = 1, and w ∼ CN (0, 1) is the
additive white Gaussian noise (AWGN) term.

Then, (4) can be re-written in the matrix-form as

y =
√
ρhTΦgs+ w, (3)

where g = [g1, · · · , gN ]
T and h = [h1, · · · , hN ]

T are the
channel coefficient vectors between the BS and the RIS and
between the RIS and the terminal, respectively, while Φ =
diag

([
e−jφ1 , · · · , e−jφN

])
is the diagonal matrix containing

the phase-shifts applied by the elements of the LIS.
It can be noticed that (3) is similar to the equation of con-

ventional MIMO systems employing precoding/beamforming
for transmission. However, differently from those systems,
where precoding/beamforming is carried out at the transmitter



3

side, here it is carried out over the transmission medium (i.e.,
the environment) [19].

The complex channels can be written in polar representation
(i.e., with magnitude and phase) as hn = αne

jθn and gn =
ξne

jψn , therefore, (4) can be re-written as

y =
√
ρ

[
N∑
n=1

αnξne
j(θn+ψn−φn)

]
s+ w

=
√
ρ

[
N∑
n=1

αnξne
jδn

]
s+ w,

(4)

where the second line is obtained from the assumption that the
LIS only generates discrete phases and consequently, there is
a phase-noise, δn = θn + ψn − φn.

Considering the phase-noise, then the instantaneous SNR at
the destination is given by

γ = ρ

∣∣∣∣∣
N∑
n=1

αnξne
jδn

∣∣∣∣∣
2

. (5)

Note that the instantaneous SNR is maximized when δn =
0, i.e., the channels are perfectly estimated, and the LIS
can accurately generate the phases induced by the channels
(meaning that Q→∞) [20].

Lemma 1. From empirical comparisons between the nor-
malised histogram of the random variable given by

r =
√
ρ

∣∣∣∣∣
N∑
n=1

αnξne
jδn

∣∣∣∣∣ =
√
ρ

∣∣∣∣∣
N∑
n=1

|gn||hn|ejδn
∣∣∣∣∣ , (6)

and the theoretical PDF of a Gamma random variable, it
is possible to say that the PDF of r can be accurately
approximated by the Gamma PDF with shape and scale
parameters given by κ and θ, respectively as

κ =
−(E[γ2]−5E[γ]2)+

√
E[γ2]2−34E[γ2]E[γ]2+49E[γ]4

2(E[γ2]−E[γ]2)
> 0,

(7)

θ =

√
−
√

E[γ2]2+14E[γ2]E[γ]2+E[γ]4+2E[γ2]+2E[γ]2
6E[γ] > 0,

(8)
where E [γ] and E

[
γ2
]

are given by (11) and (12), respec-
tively.

Some examples of this comparison are shown in Section
IV. The parameters κ and θ are found following the rationale
presented in Appendix A. Therefore, the PDF of γ can be found
following the standard transformation of random variables,
γ = r2, and is defined as

fγ(γ) =
1

2Γ(κ)θκ
γ(κ−2

2 )e−
√
γ

θ , γ ≥ 0. (9)

In its turn, the cumulative distribution function (CDF) of
the SNR random variable, γ, is defined as

Fγ(γ) =

∫ γ

0

fγ(x)dx = 1−
Γ
(
κ,
√
γ

θ

)
Γ(κ)

, γ ≥ 0, (10)

where Γ(.) is the Euler gamma function while Γ(., .) is
the upper incomplete gamma function. The integral result is
obtained by directly applying (Eq. 2.33.10, [21]).

Remark 1. When Q → ∞, i.e., the LIS is able to generate
any phase-shift, the phase-noise is zero, δn = 0,∀n, and
consequently, (11) and (12) can be simplified to (13) and (14),
respectively, and whose derivations are presented in Appendix
B.

A. Exact Ergodic Spectral Efficiency

The ergodic spectral efficiency of the LIS-assisted system
is defined as

C = E [log2 (1 + γ)]

=

∫ ∞
0

log2 (1 + γ) fγ(γ)dγ.
(15)

Solving (15) through an integral solver [22], we find the
exact closed-form expression for the ergodic capacity given by
(16), where pFq (a1, · · · , ap; b1, · · · , bq; z) is the generalized
hypergeometric function [23] and Ψ(n)(z) is the nth derivative
of the digamma function, also known as the polygamma
function [24].

Remark 2. In high SNR regime, the ergodic spectral efficiency
in (16) can be approximated as in (17).

Remark 3. When ρ→∞, then (16) becomes (18).

lim
ρ→∞

C =
4 log(θ)

log(4)
. (18)

The proofs for Remarks 2 and 3 are presented in Appendices
C and D, respectively.

Remark 4. In high SNR and N regimes, the ergodic spectral
efficiency can be approximated as

Chigh-SNR, N ≈
2

θ2(κ− 1)(κ− 2) log(4)
+

4(log(θ) + ψ(0)(κ))

log(4)
.

(19)

The proof for Remark 4 is presented in Appendix E.
Other alternative to find the expectation in (15) is using the

PDF of the random variable given by Cinst. = log2(1 + γ),
i.e., the instantaneous spectral efficiency, which can be found
after applying standard transformation of random variables to
(9) giving rise to

fCinst. (c) =
log (2)

Γ(κ)θκ
2c−1(2c − 1)(

κ−2
2 )e−

√
2c−1

θ , c ≥ 0. (20)

Then, the CDF of the instantaneous spectral capacity ran-
dom variable is expressed by

FCinst. (c) =

∫ c

0

fCinst. (x) dx = 1−
Γ
(
κ,
√
2c−1
θ

)
Γ(κ)

, (21)

whose integral is also found by directly applying (Eq. 2.33.10,
[21]).
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E [γ] = E
[
r2
]

= ρβgβhA1 = ρβgβhN

[
1 +

1

16
(N − 1)Q2 sin2

(
π

Q

)]
. (11)

E
[
γ2
]

= E
[
r4
]

= (ρβgβh)
2A2

= (ρβgβh)
2 N

256

512(N + 1) +
32(N − 1)Q2

π2
+

(N − 1)Q2
[
π sin2

(
π
Q

)(
(N − 2)Q

(
π(N − 3)Q sin2

(
π
Q

)
+ 16 sin

(
2π
Q

))
+ 16π(4N + 1)

)
− 32 cos

(
4π
Q

)]
π2

 .

(12)

lim
Q→∞

E [γ] = Nρβgβh

[
1 +

(N − 1)π2

16

]
. (13)

lim
Q→∞

E
[
γ2
]

=
Nρ2 (βgβh)

2

256

[
256 + 768N + π4(N − 3)(N − 2)(N − 1) + 48π2(2N − 1)(N − 1)

]
. (14)

C =
2 2F3

(
1, 1; 2, 32 −

κ
2 , 2−

κ
2 ;− 1

4θ2

)
θ2(κ− 1)(κ− 2) log(4)

−
2π sec

(
πκ
2

)
1F2

(
κ
2 + 1

2 ; 3
2 ,

κ
2 + 3

2 ;− 1
4θ2

)
(κ+ 1)θκ+1Γ(κ) log(4)

+
2π csc

(
πκ
2

)
1F2

(
κ
2 ; 1

2 ,
κ
2 + 1;− 1

4θ2

)
κθκΓ(κ) log(4)

+
4(log(θ) + ψ(0)(κ))

log(4)
.

(16)

Chigh-SNR ≈
2

θ2(κ− 1)(κ− 2) log(4)
−

2π sec
(
πκ
2

)
(κ+ 1)θκ+1Γ(κ) log(4)

+
2π csc

(
πκ
2

)
κθκΓ(κ) log(4)

+
4(log(θ) + ψ(0)(κ))

log(4)
. (17)

C ≤ Cupper = log2

(
1 +Nρβgβh

[
1 +

1

16
(N − 1)Q2 sin2

(
π

Q

)])
. (22)

Cmax.
upper = lim

Q→∞
Cupper

= lim
Q→∞

log2

(
1 +Nρβgβh

[
1 +

1

16
(N − 1)Q2 sin2

(
π

Q

)])
= log2

(
1 +Nρβgβh

[
1 +

(N − 1)π2

16

])
.

(23)

C ≥ Clower ≈ log2

(
1 +

E [γ]
3

E [γ2]

)

= log2

1 +
256N2ρβgβh

(
1
16 (N − 1)Q2 sin2

(
π
Q

)
+ 1
)3

32(N−1)Q2

π2 +
(N−1)Q2(π sin2( πQ )((N−2)Q(π(N−3)Q sin2( πQ )+16 sin( 2π

Q ))+16π(4N+1))−32 cos( 4π
Q ))

π2 + 512(N + 1)

 .

(24)
Cmax.

lower = lim
Q→∞

Clower

= log2

(
1 +

N2ρβgβh
(
π2(N − 1) + 16

)3
16 ((N − 1) (π4 (N2 − 5N + 6) + 48π2(2N − 1) + 256) + 512(N + 1))

)
.

(25)

B. Upper and Lower-bounds for the Ergodic Spectral Effi-
ciency

As it can be seen, (16) is quite complex. Therefore, here
we aim at finding simpler but yet tight bounds for the ergodic
spectral efficiency of the LIS-assisted system. According to
Jensen’s inequality [16], it holds that

E [log2 (1 + γ)] ≤ log2 (1 + E [γ]) . (26)

Then, by using E [γ] given by (11), a possible upper-bound
for the ergodic capacity of the LIS-assisted system can be

given by (22). As it is tight for high SNR scenarios, it can be
assumed as a good approximation.

On the other hand, again according to Jensen’s inequality
[16], it holds that

E [log2 (1 + γ)] ≥ log2

(
1 +

[
E
[

1

γ

]]−1)
. (27)

Consequently, by using a tight approximation of E [1/γ]
(see Appendix F), a lower-bound for the ergodic capacity of
the LIS-assisted system can be derived and given as (24).
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Like the SNR, the spectral efficiency is also maximized
when Q → ∞, meaning that the LIS has infinite phase-shift
precision and can generate any phase-shift. In this case, the
maximum ergodic spectral efficiency with the upper and lower
bounds are given by (23) and (25), respectively.

C. Impact of Bit Quantization in the Spectral Efficiency

In practical communication systems, the set of phase-shifts
is limited by the number of quantization bits of the LIS,
influencing the achieved spectral efficiency directly. Therefore,
in this section, we propose a criterion for selecting the number
of quantization levels Q = 2b so that the ergodic spectral
efficiency is optimized up to a specific spectral degradation in
bits/s/Hz. In order to quantify this degradation, we define the
error ε brought about by a limited number of phase-shifts as

Cmax.
upper − Cupper ≤ ε. (28)

Remark 5. From (28), we see that when the number of
LIS elements tends to ∞, then the ergodic spectral efficiency
degradation, ε, becomes

lim
N→∞

ε = log2

(
π2

Q2 sin2 (π/Q)

)
bits/s/Hz. (29)

Remark 6. From (28), we see that when ρ → ∞, then the
ergodic spectral efficiency degradation, ε, is given by

lim
ρ→∞

ε = log2

(
16 + (N − 1)π2

16 + (N − 1)Q2 sin2 (π/Q)

)
bits/s/Hz.

(30)

Proposition 1. In order to guarantee an suitable ergodic
spectral efficiency degradation of ε bits/s/Hz compared to a
LIS with full-resolution phase-shift, the number of quantization
levels, Q, of the LIS should satisfy

Q sin (π/Q) ≥

√
16 (2−ε − 1)

Nρβgβh(N − 1)
+

16 (2−ε − 1)

N − 1
+ π22−ε.

(31)

Remark 7. From (31), we see that when N →∞, the number
of quantization levels, Q, should satisfy

lim
N→∞

Q sin (π/Q) ≥
√

2−επ. (32)

Remark 8. From (31) we see that when ε → ∞, then the
number of quantization levels, Q, should satisfy

lim
ε→∞

Q sin (π/Q) ≤ π. (33)

After analysing Remark 8, we notice that the first term in
(33) is equal to π only when Q→∞. Therefore, in order to
have no degradation at all, an infinite number of quantization
levels is necessary, which demonstrates the correctness of
Remark 8.

Summing up, these results can be used to select the preci-
sion necessary for a LIS-assisted system to achieve a pre-
defined and acceptable degradation in its ergodic spectral
efficiency.

D. Outage Probability

Based on the knowledge of the approximate PDF of the
instantaneous spectral efficiency given by (20), it is possible
to find its cumulative density function (CDF) and derive
analytical expressions for the outage probability. The outage
probability is defined as the probability that the achieved
instantaneous spectral efficiency falls below a given threshold
Cout. and can be written as

Pout. = Pr{Cinst. < Cout.}

=

∫ Cout.

0

fCinst. (x) dx

= 1−
Γ

(
κ,

√
2Cout.−1
θ

)
Γ(κ)

,

(34)

whose proof is provided in Appendix G.
Besides that way, the outage probability can also be defined

with regard to the instantaneous SNR. In this case,it is the
probability that the instantaneous SNR falls below a given
SNR threshold γout.. So, the outage probability is given by

Pout. = Pr{γ < γout.}

=

∫ γout.

0

fγ (x) dx

=
1

θκ/2

1−
Γ
(
κ,
√
γout.

θ

)
Γ(κ)

 ,
(35)

and found by using (92) in Appendix G. It can also be
expressed as

Pout. =
γ
κ
2

κθ
3κ
2

1F1

(
κ, κ+ 1,−

√
γ

θ

)
. (36)

Remark 9. In high SNR regime, the outage probability can
be approximated as

P high-SNR
out. =

γ
κ
2

κθ
3κ
2

. (37)

The proofs of (36) and (37) are provided in Appendix H.

E. Average Symbol Error Rate

According to [25], the average Symbol Error Rate (SER)
is defined as the expectation of conditional error probability,
Pe|γ , given the distribution of the SNR, γ. For a wide
variety of modulation schemes, Pe|γ is defined as Pe|γ =
aQ
(√
bγ
)
, where a and b are constant modulation dependent

parameters and Q is the Gaussian Q-function defined as∫∞
x
e−t

2/2/
√

2πdt [25]. Therefore, the average SER is derived
as

E
[
aQ
(√

bγ
)]

= a

∫ ∞
0

Q
(√

bγ
)
fγ(γ)dγ, (38)

and can be analytically expressed by (40). The proof of (40)
is provided in Appendix I.

Note that in (40), a and b are constants that depend on
the modulation scheme. For instance, the average SER of the
binary phase shift keying (BPSK) modulation is obtained when
a = 1 and b = 2, while that for the M -ary Pulse Amplitude



6

Modulation (M -PAM), a = 2(M−1)/M and b = 6/(M2−1).
In the same way, a = b = 2 are applied for the average
SER of the quadrature phase shift keying (QPSK) modulation.
Finally, a = 2 and b = 2 sin2 (π/M) for M -ary phase shift
keying (M-PSK) modulation, while a = 4(1 − 1/

√
M) and

b = 3/(M − 1) for the average SER of the M -ary quadrature
amplitude modulation (M-QAM), when M > 4.

Remark 10. In high SNR regime, the average SER can be
approximated as

P high-SNR
e ≈ a2−

κ
2−1b−

κ
2 θ−κ

(
1

Γ
(
κ
2 + 1

) − κ√
2bθΓ

(
κ+3
2

)) ,
(39)

whose proof is provided in Appendix J.
After analyzing (39), it is possible to observe that the first

term inside the parentheses is the dominant one. Otherwise,
the average SER would be a negative number since a, b, and
θ are values greater than zero. This direct insight results in
the following remark.

Remark 11. The average SER decreases when κ and/or b
increases and when a and/or θ decreases.

As shown in Section IV, this remark demonstrates that the
average SER decreases as the transmission power, ρ, and/or
the number of reflecting elements, N , increases. On the other
hand, the average SER increases as the modulation order
increases.

F. Diversity Order

The diversity order is a fundamental parameter of diversity-
based systems. It measures the number of independent paths
over which the data is received. The diversity order, D, is
formally defined as the negative slope of the average SER
versus the average SNR curve in a log-log scale, and calculated
as by [26]

D = lim
ρ−∞

− logPe
log ρ

. (41)

From the definition above, we can see that the diversity order
is a high-SNR concept.

Remark 12. The diversity order of the LIS-assisted system is
obtained as

D =
5A2

1 +
√

49A4
1 − 34A2

1A2 +A2
2 −A2

4 (A2 −A2
1)

. (42)

The parameters and proof of (42) are detailed in Appendix
K. From them, we realise that the diversity order increases as
N .

Remark 13. Despite both source and destination are equipped
with a single antenna, the achievable diversity order grows
with the number of LIS reflecting elements. It is worth noting
that each reflecting element modifies the incident waves’
phases to add at the destination coherently. A direct SISO
path between source and destination would only allow for
a unitary diversity order, once diversity gains can only be
obtained by employing multiple antennas at transmission

and/or receiving sides. However, a LIS employment provides
a substantial diversity order to the communication system just
by adding passive reflecting elements with adjustable phases
to the system.

G. Power-scaling law

This subsection analyses the power-scaling law of the
ergodic spectral efficiency regarding the number of reflecting
elements in a LIS-assisted system in which N →∞.

If N grows without limit and we consider that the transmit
power, ρ, can be scaled down with N2 according ρ = P/N2

and P is fixed, then (22) and (23) become, respectively

Cupper = log2

1 +N
P

N2
βgβh

1 +
(N − 1)Q2 sin2

(
π
Q

)
16


→

PβgβhQ
2 sin2

(
π
Q

)
16

, N →∞
(43)

and

Cmax.
upper = log2

(
1 +N

P

N2
βgβh

[
1 +

(N − 1)π2

16

])
→ Pβgβhπ

2

16
, N →∞.

(44)

These results confirm that with many reflecting elements
and perfect channel information, the transmit power can be
reduced proportionally to 1/N2 without compromising the
spectral efficiency.

Remark 14. From (22) and (43), it is possible to see that if
we decrease the transmit power proportionally to 1/Nα, with
α > 2, then the SNR goes to zero as N → ∞. When α < 2,
the SNR grows without bound as N → ∞. This means that
1/N2 (i.e., α = 2) is the fastest rate at which we can decrease
the transmit power and still maintain a fixed rate.

The Remark 14 shows that as N grows without bound,
the transmit power can be reduced proportionally to 1/N2.
The transmit power reduction is significant mainly to power-
constrained devices such as Internet of Things (IoT) devices
[27, 28].

IV. SIMULATION RESULTS

This section presents some numerical results to validate the
Monte Carlo simulations obtained from 106 realizations. The
setup in Figure 2 shows the relative positions adopted. rg and
rh are the distance between source and LIS, and between LIS
and destination, respectively. Both of them are set to 25 m.

We assume that the large-scale fading coefficients are mod-
eled as βh = zh/(rh)ν and βg = zg/(rg)

ν , in which zh and
zg are log-normal random variables with standard deviation
σshadow, while rh is the distance between the source and the
LIS and rg is the distance between the LIS and the destination.
ν is the path-loss exponent. For all simulation results, we
adopt the typical suburban area parameters σshadow = 8 dB
and ν = 3, 67.

Figure 3 presents some comparisons of the normalized
histogram of the random variable given by the instantaneous
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Pe = E
[
aQ
(√

bγ
)]

= a2−
κ
2−1b−

κ
2 θ−κ

(
2F2

(
κ
2 + 1

2 ,
κ
2 ; 1

2 ,
κ
2 + 1; 1

2bθ2

)
Γ
(
κ
2 + 1

) −
κ 2F2

(
κ
2 + 1

2 ,
κ
2 + 1; 3

2 ,
κ
2 + 3

2 ; 1
2bθ2

)
√

2bθΓ
(
κ+3
2

) )
.

(40)

⋮ ⋮ ⋮ ⋮ ⋮⋮

𝒓𝒈

𝒓𝒉

Figure 2. Adopted setup.

N = 64, Q = 128 (7 bits)
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Figure 3. Comparison of the approximated PDF for the instantaneous sum-
capacity.

SNR (see (5)) against the theoretical PDF given by (9). As can
be noticed, even for a small number of reflecting elements and
quantization bits, the approximation is quite tight.

Figure 4 shows the Kullback-Leibler Divergence [29] be-
tween the approximated SNR PDF and the real distribution
of the SNR random variable over the variation of the number
of quantization bits and for several values of LIS elements,
N . In general, this is the most known technique to evaluate
an approximation in statistics. As can be seen, from b = 2
bits, the divergence remains constant regardless of the number
of elements. However, on the other hand, as the number of
elements increases, the divergence decreases. These results

1 2 3 4 5 6 7 8 9 10

Number of bits, b

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

-10-7

-10-8

-10-9

K
ul

lb
ac

k-
Le

ib
er

 D
iv

er
ge

nc
e

N=1
N=2
N=4
N=8
N=12
N=16
N=20

Figure 4. Kullback-Leibler divergence between the approximated SNR PDF
and the real distribution.

show that only the number of LIS reflecting elements can
take the approximated PDF closer to the real one and that
the number of quantization bits has minimal impact on it. It
is aligned to the theory since an inspection of (6) reveals that
only the number of reflecting elements impact the summation
in that equation.

From Figure 5 that show the spectral efficiency as a function
of N for b ∈ {1, 4, 10}, we can see that the accuracy of
the approximation becomes better not only as N increases
but also when more bits are dedicated to quantization. For
comparison, we also present the simulated capacity curve of
the SISO system without LIS. When b = 1, LIS becomes
advantageous for N > 80. Otherwise, When b > 1, a LIS
with N > 50 is enough for its behavior to outperform that of
the system without LIS.

We also verify performance degradation when b varies. As
shown in Figure 6, the spectral efficiency decreases when b is
small. This is evident, especially for b = 1 and b = 2. But the
degradation tends to decrease as more reflective elements the
LIS has. That is, for a LIS with many elements, a few bits are
sufficient for quantization.

Regarding the distance between the source and the LIS,
we compare the schemes’ spectral efficiencies with N =
25, 50, 100, 250, 500. Figure 7 shows the results obtained for
the worst case, when b = 1. We can see that the performance
deteriorates as the distance increases. This phenomenon was
expected since the LIS is composed of only passive elements
and there is no direct path between the source and the user.
However, as already mentioned, it improves when the number
of elements on LIS increases.
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Figure 5. Spectral efficiency as a function of N for b = 1, b = 4 and b = 10.
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Figure 6. Spectral efficiency as a function of b for different values of N .

In its turn, Figure 8 shows how the spectral efficiency
behaves as ρ = P/Nα, with α = 3/2, 2, 5/2. We consider
P = 100 [dB] and b ∈ {1, 2, 4, 8, 10}. As expected and
stated in Remark 14, for α ≤ 2 and increasing N , the
capacity decreases or becomes constant no matter the number
of antennas. However, when α > 2, the capacity grows
logarithmically fast with N when N → ∞. These results
confirm that the transmit power can be reduced proportionally
to N . We can also see that, although the capacity increases
with the number of quantization bits, the performances of
b = 4, b = 8, and b = 10 are close.

Figure 9, we show the required transmit power by source
needed to achieve fixed capacities of 1 and 2 bits/s/Hz,
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Figure 7. Spectral efficiency as a function of the distance between source
and LIS, considering b = 1.
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Figure 8. Power scaling law for different α values.

respectively represented by solid and dashed lines. As expected
and predicted by Remark 14, the transmit power can be
reduced by approximately 6 [dB] by doubling the number of
LIS elements for both capacities. We can also confirm that, in
general, the system LIS-assisted system outperforms the SISO
system without LIS for approximately N > 80 regardless of
the number of quantization bits.

Figure 10 compares the average SNR as a function of the
transmitted power obtained from the simulations, (11), and
the SISO system without LIS. We consider ρ = 50 dB,
N ∈ {25, 100, 200} and b ∈ {1, 4, 8}. As we can confirm,
the relationship between the two parameters is linear. It is also
worth mentioning that the LIS-assisted system outperforms the
conventional the higher N . Moreover, the quantization bits’
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Figure 10. Average SNR in function of transmission power for b = 1, b = 4
and b = 8.

influence is not as significant, as long as b > 1.
Figure 11 shows the symbol error rate behavior for BPSK,

QPSK, 16-QAM, and 64-QAM considering N = 25. As
expected, the modulations present a decreasing level of ro-
bustness. The most important thing to note is the gap between
the curves of 1, 2, and 4 bits. It gets to be almost 5dB when
SNR is high. Although this gap exists, it is less pronounced
when more bits are dedicated to phase quantization, and b = 4
is enough to guarantee a good performance.

For computational simplicity, in Figure 12, we represent the
simulated and analytical outage probabilities only for N =
100. When considering different b values, it is possible to
confirm the previous insight; b = 4 is enough for a good
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Figure 11. Symbol Error Rate for BPSK, QPSK, 16-QAM and 64-QAM
modulations for N = 25.
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Figure 12. Outage probability for N = 100 and b ∈ {1, 2, 4, 8, 10}.

phase quantization.

V. CONCLUSION

In this paper, we have done an in-depth analysis of a prac-
tical LIS-assisted Single-Input Single-Output (SISO) system.
Since quantization errors are unavoidable, we evaluate the
influence of bits number dedicated to the phase quantization on
spectral efficiency, symbol error rate, and outage probability.
We compare such a system performance with the conventional
one without LIS through accurate closed-form expressions de-
rived for each of these metrics. We have extended our analysis
to power scaling law and the power required to achieve specific
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capacity. Not only is the influence of b verified, but also that
of the number of LIS elements.

We can conclude that the performance improves as the
number of LIS elements and bits increases. The LIS with
approximately fifty elements and four dedicated bits for phase
quantization outperforms the conventional system performance
without LIS.

APPENDIX A

To find the parameters κ and θ for the approximated PDF
of λ, we first need to define the following Lemmas.

Lemma 2.∣∣∣∣∣
N∑
n=1

zne
jθn

∣∣∣∣∣
2

=

N∑
n=1

z2n + 2

N∑
m=1

N∑
n=m+1

zmzn cos(θm − θn).

(45)

Proof. This identity is straightforwardly found by expanding
the summation terms on its left side.

Lemma 3. If X ∼ CN (0M , σ2
XIM ), then Y = |X| is a

Rayleigh random variable with PDF given by

fY (y) =
2y

σ2
X

e
− y2

σ2
X , y ≥ 0. (46)

Proof. The proof for this Lemma is given in [30].

Lemma 4. If Y is a Rayleigh random variable with PDF
defined by (46), then, its 4 first moments are given by

E [Y ] =

∫ ∞
0

yfY (y)dy =
σX
√
π

2
, (47)

E
[
Y 2
]

=

∫ ∞
0

y2fY (y)dy = σ2
X , (48)

E
[
Y 3
]

=

∫ ∞
0

y3fY (y)dy =
3σ3

X

√
π

4
, (49)

E
[
Y 4
]

=

∫ ∞
0

y4fY (y)dy = 2σ4
X . (50)

Lemma 5. If X is a uniform random variable with PDF given
by

fX(x) =

{
a
2π , −

π
a ≤ x ≤

π
a ,

0, otherwise,
(51)

then Y = −X has the same PDF as X , which was defined in
(51).

Proof. This can be straightforwardly proved by noticing that
the PDF of X is symmetrical around 0.

Lemma 6. If θm and θn are independent and identically
distributed uniform random variables with PDF given by (51),
then Y = θm + θn has the following PDF

fY (y) =


a
2π

(
1 + a

2πy
)
, − 2π

a ≤ y ≤ 0,
a
2π

(
1− a

2πy
)
, 0 < y ≤ 2π

a ,

0, otherwise.
(52)

Proof. From the theory, we know that the sum of two random
variables equals the convolution of fθm(θm) and fθn(θn) is

fY (y) =

∫ ∞
−∞

fθm(y − θn)fθn(θn)dθn. (53)

Therefore, fY (y) is defined as

fY (y) =


∫ π
a+y

−πa
a2

4π2 dθn, − 2π
a ≤ y < 0,∫ π

a

−πa+y
βg
4π2 dθn, 0 ≤ y ≤ 2π

a ,

0, otherwise,

(54)

which concludes the proof.

Lemma 7. If the PDF of the sum of two independent and
identically distributed uniform random variables is given by
(52), then

E [cos(θm − θn)] =
a2 sin2(πa )

π2
. (55)

Proof. By using Lemma 5, we can rewrite (55) as
E [cos(θm + θn)], then applying Lemma 6 we have

E [cos(θm + θn)] = E [cos(y)]

=

∫ 0

− 2π
a

cos(y)
a

2π

(
1 +

a

2π
y
)
dy +

∫ 0

− 2π
a

cos(y)
a

2π

(
1− a

2π
y
)
dy.

(56)
Solving the two integrals in (56) concludes the proof.

Lemma 8. If the PDF of the sum of two independent and
identically distributed uniform random variables is given by
(52), then

E
[
cos2(θm − θn)

]
=

8π2 + a2 − a2 cos2( 4π
a )

16π2
. (57)

Proof. By using Lemma 5 we can rewrite (55) as
E
[
cos2(θm + θn)

]
, then applying Lemma 6 we have

E
[
cos2(θm + θn)

]
= E

[
cos2(y)

]
=

∫ 0

− 2π
a

cos2(y)
a

2π

(
1 +

a

2π
y
)
dy +

∫ 0

− 2π
a

cos2(y)
a

2π

(
1− a

2π
y
)
dy.

(58)
Solving the two integrals in (58) concludes the proof.

Lemma 9. If X is a uniform random variable with PDF given
by (51), then the PDF of Y = 2X is given by

fY (y) =
a

4π
,−2π

a
≤ y ≤ 2π

a
. (59)

Proof. This is proved by using the standard transformation of
random variables.

Lemma 10. If θl, θm and θn are independent and identically
distributed uniform random variables with PDF given by (51),
then Y = 2θl − (θm + θn) has the following PDF

fY (y) =



a
2π + a2y

4π2 + a3y2

32π3 , − 4π
a ≤ y ≤ −

2π
a ,

a
4π −

a3y2

32π3 , − 2π
a < y ≤ 0,

a
4π −

a3y2

32π3 , 0 < y ≤ 2π
a ,

a
2π −

a2y
4π2 + a3y2

32π3 ,
2π
a < y ≤ 4π

a ,

0, otherwise.

(60)

Proof. We start by remembering that we know the PDF of
W = 2θl and of Z = θm + θn, which are given by (59)
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and (52), respectively. Next by applying Lemma 5, we can re-
write Y as Y = Z+W , which is the sum of two independent
random variables. Therefore, the PDF of Y is the convolution
between the PDFs of W and Z, which is defined as

fY (y) =

∫ ∞
−∞

fW (y − z)fZ(z)dz. (61)

Therefore, fY (y) is defined as

fY (y) =



∫ 2π
a +y

− 2π
a

a2

8π2

(
1 + a

2π z
)
dz, − 4π

a ≤ y < −
2π
a ,∫ 2π

a +y

0
a2

8π2

(
1− a

2π z
)
dz +

∫ π
a

−πa+y
a2

8π2

(
1 + a

2π z
)
dz, − 2π

a ≤ y < 0,∫ 0

− 2π
a +y

a2

8π2

(
1 + a

2π z
)
dz +

∫ π
a

−πa+y
a2

8π2

(
1− a

2π z
)
dz, 0 ≤ y < 2π

a ,∫ 2π
a

− 2π
a +y

a2

8π2

(
1− a

2π z
)
dz, 2π

a ≤ y ≤
4π
a ,

0, otherwise,
(62)

which concludes the proof.

Lemma 11. If the PDF of the sum of three independent
random variables, Y = 2θl − (θm + θn), is given by (60),
then

E [cos(2θl − (θm + θn))] =
a3 cos(πa ) sin3(πa )

π3
. (63)

Proof. By using Lemma 10 we have

E [cos(2θl − (θm + θn))] = E [cos(y)]

=

∫ − 2π
a

− 4π
a

cos(y)

[
a

2π
+
a2y

4π2
+
a3y2

32π3

]
dy

+

∫ 2π
a

− 2π
a

cos(y)

[
a

4π
− a3y2

32π3

]
dy

+

∫ 4π
a

2π
a

cos(y)

[
a

2π
− a2y

4π2
+
a3y2

32π3

]
dy.

(64)
Solving the three integrals in (64) concludes the proof.

Lemma 12. If θl, θm, and θn are independent and identically
distributed uniform random variables with PDF given by (51),
then

E [cos(θl − θm) cos(θl − θn)] =
a2 sin2(πa )

[
2π + a sin( 2π

a )
]

4π3
.

(65)

Proof. We start by applying the trigonometric identity
cos(a) cos(b) = cos(a−b)+cos(a+b)

2 to (66), which then can be
re-written as

E [cos(θl − θm) cos(θl − θn)] =
1

2
E [cos(θn − θm)]

+
1

2
E [cos(2θl − θn − θm)] .

(66)

Next, by applying Lemmas 7 and 11 to (66), we conclude
the proof.

A. Approximated PDF of the Instantaneous SNR

Let the random variable Z = r, where r is defined in (6),
therefore, the PDF of Z can be accurately approximated by a
Gamma distribution with parameters κ and θ, defined by (7)
and (8), respectively. This is empirically proven by comparing
the normalized histogram of Z against the theoretical PDF of
a Gamma random variable, Y , with the parameters defined
earlier.

In order to approximate Z as a Gamma random variable,
Y , we have to find the parameters shape and scale (i.e., κ
and θ) based on statistical information of Z. Therefore, we
approximate Z as a Gamma random variable, Y , by using
two different moments of Y and then assuming that E

[
Y 2
]

=
E
[
Z2
]

and E
[
Y 4
]

= E
[
Z4
]
.

Those two moments of the Gamma distribution Y are
defined as

E
[
Y 2
]

= κ(κ+ 1)θ2, (67)

and
E
[
Y 4
]

= κ(κ+ 1)(κ+ 2)(κ+ 3)θ4. (68)

Based on (67), the assumption that E
[
Y 2
]

= E
[
Z2
]

and
then isolating θ we find

θ =

√
E [Z2]

κ(κ+ 1)
. (69)

Next, plugging (69) back into (68) and assuming that
E
[
Y 4
]

= E
[
Z4
]
, we find κ as(

E
[
Z4
]
− E

[
Z2
]2)

κ2 +
(
E
[
Z4
]
− 5E

[
Z2
]2)

κ− 6E
[
Z2
]2

= 0,

(70)
which is a quadratic equation with the following two roots

κ0 =
−
(
E[Z4]−5E[Z2]

2
)
+
√

E[Z4]2−34E[Z4]E[Z2]2+49E[Z2]4

2(E[Z4]−E[Z2]2)
,

(71)

κ1 =
−
(
E[Z4]−5E[Z2]

2
)
−
√

E[Z4]2−34E[Z4]E[Z2]2+49E[Z2]4

2(E[Z4]−E[Z2]2)
,

(72)
where out of the two roots, only is useful, i.e., only one root
has a positive value. Since κ ought to be a real and positive
number, we assume that the value within the square root is
a positive one. Next, assuming that 5E

[
Z2
]2 ≥ E

[
Z4
]
, then

only κ0 results in a positive value.
Next, in order to find the moment E

[
Z2
]
, we first expand

E
[
Z2
]

as

E
[
Z2
]

= E [γ]

= E

ρ ∣∣∣∣∣
N∑
n=1

|hn||gn|ejδn
∣∣∣∣∣
2


= E

[
ρ

N∑
n=1

d2n + 2ρ

N∑
m=1

N∑
n=m+1

dmdn cos(δm − δn)

]
,

(73)

where dk = |hk||gk| and the last line is found by applying
Lemma 2. Thus, using the fact that |hn|, |gn|, and δn, ∀n are
mutually independent random variables and that hm and hn,
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and gm and gn, ∀m,n are identically distributed, then (73),
can be re-written as

E
[
Z2
]

= ρ

N∑
n=1

E
[
|hn|2

]
E
[
|gn|2

]
+2ρ

N∑
m=1

N∑
n=m+1

E [|hm|]2 E [|gm|]2 E [cos(δm − δn)].

(74)

Then, by applying Lemmas 4 and 7 to (74), we find (11).
Next, in order to find the moment E

[
Z4
]
, we initially

expand it as

E
[
Z4
]

= E
[
γ2
]

= E

( N∑
l=1

d2l

)2


+ 4

N∑
l=1

N∑
m=1

N∑
n=m+1

E
[
d2l dmdn cos(δm − δn)

]
+ 4E

( N∑
m=1

N∑
n=m+1

dmdn cos(δm − δn)

)2
 ,

(75)

where dk = |hk||gk|. The first term of (75) can be expressed
as

E

( N∑
l=1

d2l

)2
 = E

 N∑
n=1

d4n +

N∑
m=1

N∑
n=1,n6=m

d2md
2
n


= NE

[
|gm|4

]
E
[
|hm|4

]
+N (N − 1)E

[
|gm|2

]2 E [|hm|2]2
= N(N + 3) (βgβh)

2
,

(76)

where the last line of (76) is found by applying Lemma 4.
Next, the second term of (75) can be expressed as (77), where
the last line is found by applying Lemmas 4 and 7. Then, the
third term of (75) can be expressed as (78), where the last
line is found after applying Lemmas 4, 7, 8, and 12. Finally,
after plugging (76), (77), and (78) back into (75) and several
simplifications, we find (12).

The proof is concluded by replacing Equations (11) and
(12) into the definitions of κ and θ, given by (71) and (69),
respectively.

APPENDIX B

For the derivation of Remark 1, we need to define the
following Lemma.

Lemma 13.
lim
x→0

sin (x)

x
= 1. (79)

Proof. We prove Lemma 13 by applying L’Hôpital’s rule to
(79) as shown next

lim
x→0

∂ sin(x)
∂x
∂x
∂x

= lim
x→0

cos(x) = 1. (80)

Lemma 14.

lim
x→∞

(
x sin

(a
x

))n
= an,∀a, n ∈ R. (81)

Proof. We start by re-writing (81) as(
lim
x→∞

a

a

sin
(
a
x

)
1
x

)n
=

(
lim
x→∞

a
sin
(
a
x

)
a
x

)n
, (82)

where we also used the power rule of limits to re-write it.
Next, we apply the following change of variables θ = a

x to
(82), resulting in(

lim
θ→0

a
sin (θ)

θ

)n
= an

(
lim
θ→0

sin (θ)

θ

)n
, (83)

where we used the constant multiple rule of limits to find the
last part. Next, by using Lemma 13, we conclude the proof.

A. Derivation of Remark 1

The results (13) and (14) are found after expanding (11) and
(12), using Lemma 14 and the fact that limx→∞ cos(1/x) = 1.

APPENDIX C

For the proof of (17) we should notice that when
limρ→∞ θ = ∞ then, consequently, limρ→∞− 1

4θ2 = 0.
Therefore,

lim
ρ→∞ 2F3

(
1, 1; 2,

3

2
− κ

2
, 2− κ

2
;− 1

4θ2

)
= 1. (84)

lim
ρ→∞ 1F2

(
κ

2
+

1

2
;

3

2
,
κ

2
+

3

2
;− 1

4θ2

)
= 1. (85)

lim
ρ→∞ 1F2

(
κ

2
;

1

2
,
κ

2
+ 1;− 1

4θ2

)
= 1. (86)

Hence, in high SNR regime (16) can be tightly approxi-
mated as (17), which concludes the proof.

APPENDIX D

The proof of (18) is straightforwardly found by noticing
that the first three terms of (17) tend to 0 when ρ→∞, since
θ →∞ when ρ→∞, which concludes this proof.

APPENDIX E

In high SNR regime, as N →∞ and κ→∞, Γ(κ) grows
even faster. Therefore,

lim
N→∞

2π sec
(
πκ
2

)
(κ+ 1)θκ+1Γ(κ) log(4)

= 0. (87)

lim
N→∞

2π csc
(
πκ
2

)
κθκΓ(κ) log(4)

= 0. (88)

These two terms tend to 0 faster than the other 2 terms,
concluding the proof.
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4

N∑
l=1

N∑
m=1

N∑
n=m+1

E
[
d2l dmdn cos(δm − δn)

]
= 4

N∑
m=1

N∑
n=1,n6=m

E
[
d3mdn cos(δm − δn)

]
+ 4

N∑
l=1

N∑
m=1,m 6=l

N∑
n=m+1,n6=l

E
[
d2l dmdn cos(δm − δn)

]
= 4N(N − 1)E

[
|gm|3

]
E
[
|hm|3

]
E [|gm|]E [|hm|]E [cos(δl − δm)]

+ 2N(N − 1)(N − 2)E
[
|gl|2

]
E
[
|hl|2

]
E [|gm|]E [|hm|]E [|gn|]E [|hn|] cos(δm − δn)

=
1

16
N(N − 1)(2N + 5) (βgβh)

2
Q2 sin2

(
π

Q

)
.

(77)

4E

( N∑
m=1

N∑
n=m+1

dmdn cos(δm − δn)

)2
 = 4

N∑
j=1

N∑
l=j+1

N∑
m=1

N∑
n=m+1

E [djdldmdn cos(δj − δl) cos(δm − δn)]

= 4

N∑
j=1

N∑
l=j+1

N∑
m=1,m=j

N∑
n=m+1,n=l

E
[
d2jd

2
l cos2(δj − δl)

]
+ 8

N∑
l=1

N∑
m=1,m 6=l

N∑
n=m+1,n6=l

E
[
d2l dmdn cos(δl − δm) cos(δl − δn)

]
+ 4

N∑
j=1

N∑
l=1,l 6=j 6=m6=n

N∑
m=1,l 6=j 6=m 6=n

N∑
n=1,l 6=j 6=m6=n

E [djdldmdn cos(δj − δl) cos(δm − δn)]

=
N(N − 1) (βgβh)

2
{
Q2
[
π(N − 2) sin2

(
π
Q

)(
π
(

(N − 3)Q2 sin2
(
π
Q

)
+ 32

)
+ 16Q sin

(
2π
Q

))
− 32 cos

(
4π
Q

)]
+ 32

(
Q2 + 8π2

)}
256π2

.

(78)

APPENDIX F

Here we outline the derivation of Clower in (24). We start
by applying the Taylor series expansion of 1/γ around E [γ]
[21], the term E [1/γ] in (27) can be approximated as [31]

E
[

1

γ

]
≈ 1

E [γ]
+

var (γ)

E [γ]
3 =

E
[
γ2
]

E [γ]
3 . (89)

After replacing E [γ] and E
[
γ2
]

in (89) via (11) and (12),
respectively, and then by substituting the resultant expression
into (27), Clower can be approximated as shown in the second
part of (24).

APPENDIX G

Here we describe the derivation of the outage probability
given by (34). Using the PDF of the instantaneous capacity
given by (20), the outage probability can be written as

Pout. = Pr{Cinst. < Cout.}

=
log (2)

Γ(κ)θκ

∫ Cout.

0

2u−1(2u − 1)(
κ−2
2 )e−

√
2u−1

θ du.
(90)

Next, using the following change of variable x = 2u − 1,
then (90) becomes

Pout. =
1

2Γ(κ)θκ

∫ 2Cout.−1

0

x(κ−2
2 )e−

√
x
θ dx. (91)

Finally, using (2.33.10) from [21]∫
xme−βx

n

dx = −
Γ
(
m+1
n , βxn

)
nβ

m+1
n

, (92)

we find a solution for the the integral in (91), which concludes
the proof.

APPENDIX H

For the proofs of (36) and (37), we first to define the
following Lemmas.

Lemma 15. According to (Eq. 8.2.5, [23])

1− Γ(a, b)

Γ(a)
=
γ(a, b)

Γ(a)
, (93)

where γ(a, b) is the lower incomplete gamma function.

Lemma 16. According to (Eq. 8.5.1, [23])

γ(a, b) = a−1ba 1F1 (a, a+ 1,−b) . (94)

Lemma 17. According to (07.20.03.0001.01) of [32]

1F1 (a, b, 0) = 1. (95)

Therefore, applying Lemmas 15 and 16, defined above, to
(35) we end up with (36), which concludes the proof. Now,
(37) is found by applying Lemma 17 to (36) and remembering
that limρ→∞ θ =∞, then limρ→∞ 1/θ = 0.

APPENDIX I

In this Appendix, we derive the average symbol error rate
expression given by (40), but first, we need to establish some
Lemmas.

Lemma 18.

Q(x) =
1

2

[
1− erf

(
x√
2

)]
. (96)

This relation is given by (Eq. B.111, [33]).

Lemma 19. ∫ ∞
0

xme−βx
n

dx =
Γ
(
m+1
n

)
nβ

m+1
n

. (97)
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This relation is given by (Eq. 3.326.2, [21]).

Lemma 20. If erf(.) is the Gauss error function, and a, b,
and c > 0, then the integral

∫∞
0

erf (ax)xbe−cxdx is given by
(98). The integral in (98) is found by using an integral solver
[34].∫ ∞

0

erf (ax)xbe−cxdx = c−b−1Γ(b+ 1)

+
ca−b−2Γ

(
b+3
2

)
2F2

(
b
2 + 1, b2 + 3

2 ; 3
2 ,

b
2 + 2; c2

4a2

)
√
π(b+ 2)

−
a−b−1Γ

(
b
2 + 1

)
2F2

(
b
2 + 1

2 ,
b
2 + 1; 1

2 ,
b
2 + 3

2 ; c2

4a2

)
√
π(b+ 1)

.

(98)

A. Proof of the Average Symbol Error Rate

By using the fact that γ = r2 (see (6)), the expectation of
the conditional symbol error probability given the distribution
of the SNR can be written as

Pe = E
[
aQ
(√

bγ
)]

= E
[
aQ
(√

br
)]

=

∫ ∞
0

Pe|γ(x)fR(x)dx,
(99)

where fR(r) is the PDF of the Gamma distribution, which
tightly approximates the exact PDF of the random variable, r.

By plugging Pe|γ = aQ
(√
bγ
)

and the Gamma PDF back
into (99), the average SER is rewritten as

Pe =
a

Γ(κ)θκ

∫ ∞
0

Q
(√

bx
)
xκ−1e−x/θdx. (100)

By using Lemma 18, (100) can be equivalently rewritten as

Pe =
a

Γ(κ)θκ

[∫ ∞
0

xκ−1e−x/θdx

−
∫ ∞
0

erf

(√
b

2
x

)
xκ−1e−x/θdx

]
.

(101)

The first integral inside the square brackets of (101) is found
by applying Lemma 19 to it, which results in∫ ∞

0

xκ−1e−x/θdx = Γ(κ)θκ. (102)

The second integral inside the square brackets of (101) is
found by applying Lemma 20 to it, which results in∫ ∞

0

erf

(√
b

2
x

)
xκ−1e−x/θdx

= θκΓ(κ)−
2κ/2b−

κ
2 Γ
(
κ+1
2

)
2F2

(
κ
2 + 1

2 ,
κ
2 ; 1

2 ,
κ
2 + 1; 1

2bθ2

)
√
πκ

+
2
κ
2 +

1
2 b−

κ
2−

1
2 Γ
(
κ
2 + 1

)
2F2

(
κ
2 + 1

2 ,
κ
2 + 1; 3

2 ,
κ
2 + 3

2 ; 1
2bθ2

)
√
πθ(κ+ 1)

.

(103)

Finally, by substituting (102) and (103) back into (101), we
conclude the proof.

APPENDIX J

For the proof of (39) we should notice that when
limρ→∞ θ =∞ then, consequently, limρ→∞

1
2θ2 = 0. There-

fore,

lim
ρ→∞ 2F2

(
κ

2
+

1

2
,
κ

2
;

1

2
,
κ

2
+ 1;

1

2bθ2

)
= 1. (104)

lim
ρ→∞ 2F2

(
κ

2
+

1

2
,
κ

2
+ 1;

3

2
,
κ

2
+

3

2
;

1

2bθ2

)
= 1. (105)

Hence, in high SNR regime (40) can be tightly approxi-
mated as (39), which concludes the proof.

APPENDIX K

In order to derive the diversity order, we first need to rewrite
(11) and (12) as

E [γ] = ρβgβhA1, (106)

and
E
[
γ2
]

= (ρβgβh)
2A2, (107)

respectively, where A1 and A2 do not depend on the average
SNR, ρ. By plugging these two equation back into (7) and (8),
we find

κ =
5A2

1 +
√

49A4
1 − 34A2

1A2 +A2
2 −A2

2 (A2 −A2
1)

> 0, (108)

which also does not depend on the average SNR, and

θ = ρ
1
2

√√√√βgβh

(
2A2

1 −
√
A4

1 + 14A2
1A2 +A2

2 + 2A2

)
6A1

= ρ
1
2 θ′ > 0,

(109)

which depends on the average SNR. Therefore, in high-SNR
regime, (39) can be written as

P high-SNR
e ≈ B1ρ−

κ
2 − B2ρ−

(κ+1)
2 , (110)

where

B1 =
a2−

(κ+2)
2 b−

κ
2 θ′−κ

Γ
(
κ
2 + 1

) , (111)

and

B2 =
κa2−

(κ+3)
2 b−

(κ+1)
2 θ′−(κ+1)

Γ
(
κ+3
2

) . (112)

Note that B1 and B2 do not depend on the average SNR,
i.e., they are independent from it. Furthermore, from (110),
we realise that the terms ρ−

κ
2 and ρ−

(κ+1)
2 contribute with

diversity order of κ
2 and (κ+1)

2 , respectively. Therefore, the
diversity order is calculated as

D = min

(
κ

2
,

(κ+ 1)

2

)
. (113)

Since κ > 0, then (113) is simplified as

D =
κ

2
. (114)

The proof is concluded after plugging (108) into (114).
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