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Abstract  32 

This study compares the U.S. National Water Model (NWM) reanalysis snow outputs to 33 

observed snow water equivalent (SWE) and snow-covered area fraction (SCAF) at SNOTEL 34 

sites across the Western U.S. SWE was obtained from SNOTEL sites, while SCAF was 35 

obtained from MODIS observations at a nominal 500 m grid scale. Retrospective NWM 36 

results were at a 1000 m grid scale. We compared results for SNOTEL sites to gridded NWM 37 

and MODIS outputs for the grid cells encompassing each SNOTEL site. Differences between 38 

modeled and observed SWE were attributed to both model errors, as well as errors in inputs, 39 

notably precipitation and temperature. The NWM generally under-predicted SWE, partly due 40 

to precipitation input differences. There was also a slight general bias for model input 41 

temperature to be cooler than observed, counter to the direction expected to lead to under-42 

modeling of SWE. There was also under-modeling of SWE for a subset of sites where 43 

precipitation inputs were good. Furthermore, the NWM generally tends to melt snow early. 44 

There was considerable variability between modeled and observed SCAF as well as the 45 

binary comparison of snow cover presence that hampered useful interpretation of SCAF 46 

comparisons. This is in part due to the shortcomings associated with both model SCAF 47 

parameterization and MODIS observations, particularly in vegetated regions. However, when 48 

SCAF was aggregated across all sites and years, modeled SCAF tended to be more than 49 

observed using MODIS. These differences are regional with generally better SWE and SCAF 50 

results in the Central Basin and Range and differences tending to become larger the further 51 

away regions are from this region. These findings identify areas where predictions from the 52 

NWM involving snow may be better or worse, and suggest opportunities for research directed 53 

towards model improvements. 54 

1. INTRODUCTION 55 

Accurate water supply forecasts will become increasingly crucial as western 56 

populations grow and demand more water, and as operational agencies have to manage water 57 

under global environmental change (Bhatti et al., 2016; Gergel et al., 2017; Li et al., 2017; 58 

Livneh & Badger, 2020; Mote, 2003; Mote et al., 2005; Regonda et al., 2005; Stewart et al., 59 

2004, 2005). Many scientific challenges in understanding and preparing for global 60 

environmental change rest upon our ability to predict streamflow and snowmelt quantity, 61 

timing, and spatial patterns that are important for decision making in water-sensitive sectors. 62 

In the United States, the National Weather Service (NWS) of the National Oceanic and 63 

Atmospheric Administration (NOAA) is responsible for short- and long-term streamflow 64 
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predictions across the U.S. Prior to 2016, NWS operational forecasts were limited to forecasts 65 

from NWS River Forecast Centers (RFC) at about 4000 forecast points. These were produced 66 

predominantly using the Sacramento soil moisture accounting model (SAC-SMA) to simulate 67 

runoff production and SNOW-17 model to simulate snowpack and snowmelt, within the 68 

Advanced Hydrologic Prediction System (AHPS, https://water.weather.gov/ahps/rfc/rfc.php) 69 

modeling infrastructure (McEnery et al., 2005).  70 

While Franz et al. (2008) showed that SNOW-17 performed well over the Reynolds 71 

Creek Experimental Watershed located in southwestern Idaho, other studies found limitations 72 

such as being unable to capture snowmelt timing precisely due to its simple conceptual 73 

framework, its inability to represent spatial variability of land properties, and its dependence 74 

on extensive calibration for each basin using historical data (Lundquist & Flint, 2006; Shamir 75 

et al., 2006; Zalenski et al., 2017). Furthermore, a National Research Council committee 76 

identified a gap between what is now considered state-of-the-art modeling capabilities and 77 

those used in AHPS (National Research Council, 2006). It concluded that the NWS needs to 78 

incorporate more advanced hydrologic science into their hydrologic models. 79 

The increasing availability of distributed geographic data and computer power has 80 

made it possible to develop national/continental scale, physically-based, and distributed 81 

models. In 2016, NOAA’s Office of Water Prediction implemented the National Water 82 

Model (NWM) as a physically-based distributed model based on the Weather Research and 83 

Forecasting Model Hydrological modeling system (WRF-Hydro) framework (Gochis, 84 

Barlage, Cabell, Casali, et al., 2020) to provide nationally consistent operational hydrologic 85 

forecasting capability. The main goals of the NWM were to provide forecast streamflow, 86 

produce spatially continuous countrywide estimates of hydrologic states (soil moisture, 87 

snowpack, etc.), and to implement a modeling architecture that permits rapid infusion of new 88 

data and science.  89 

The NWM provides hourly flow forecasts at about 2.7 million locations in the U.S. In 90 

addition to the increased number of forecast locations, another advantage of the NWM is that 91 

it utilizes a specific configuration of the physically-based Noah-MultiParameterization 92 

(Noah-MP) land surface model to represent the land-atmosphere interactions including snow 93 

processes. There have been several studies evaluating results from the NWM. For instance, 94 

Viterbo et al. (2020) evaluated the prediction of flooding in NWM streamflow forecasts. 95 

They found that errors were due to both meteorological input errors as well as hydrologic 96 

process representation. In another study, Lahmers et al. (2019) improved the performance of 97 

WRF-Hydro configured as NWM version 1.1 by implementing a conceptual channel 98 

https://water.weather.gov/ahps/rfc/rfc.php
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infiltration function into the model architecture. They concluded that accounting for channel 99 

infiltration loss in the semi-arid Western U.S. improves the streamflow behaviour simulated 100 

when the model is forced with high-resolution precipitation input. However, we are not aware 101 

of a systematic and thorough evaluation of the NWM snow outputs. 102 

The NWM (Gochis, Barlage, Cabell, Dugger, et al., 2020) has been running in NWS 103 

operations since 2016 to support operational flood forecasts. The latest operational version, 104 

version 2.0, was implemented in June of 2019. Prior to this operational deployment, the 105 

NWM version 2.0 retrospective analysis data were generated (by the NWM team) for 106 

investigations into the performance of the NWM. These are publicly available in Google 107 

Cloud Storage (National Weather Service, 2019).  108 

These retrospective analysis results contain output from a 26-year simulation (January 109 

1993 through December 2018), hereafter is referred to as NWM-R2. The meteorological 110 

forcing data used for the version-2 retrospective analysis configuration was drawn from the 111 

North American Land Data Assimilation System II (NLDAS2) datasets, a gridded product 112 

with spatial resolution of 1/8th-degree and hourly temporal resolution. The non-precipitation 113 

forcing fields in NLDAS2 are from the analysis fields of the National Centers for 114 

Environmental Prediction (NCEP)/North American Regional Reanalysis (NARR), i.e., a 115 

retrospective dataset, while the precipitation is from the gage-based NCEP/Climate 116 

Prediction Center (CPC). As a pre-processing step, the NWM team downscaled the NLDAS2 117 

data and applied a mountain mapper (Hou et al., 2014) adjustment to the precipitation data to 118 

adjust the values for climatological variation due to topography and wind directions 119 

(RafieeiNasab et al., 2020). The result forcing dataset is a 1 km spatial resolution data layer 120 

for each hour which contains incoming short- and longwave radiation, specific humidity, air 121 

temperature, surface pressure, near surface wind, and precipitation rate. In terms of snow, 122 

outputs include gridded snow water equivalent (SWE), the amount of water stored in a 123 

snowpack, and the snow-covered area fraction (SCAF).  124 

Across the Western U.S., snow is observed at 808 snow telemetry (SNOTEL) sites 125 

that provide data intended to quantify snow and inform water supply forecasts. Illustrative 126 

comparisons of NWM-R2 SWE to SNOTEL SWE (Figure 1) indicate that SWE is well 127 

modeled at some locations (Figure 1a) while significantly different from observations at other 128 

locations (Figure 1b). Accurate modeling of SWE is a necessary condition for accurate 129 

physically-based modeling of runoff. This motivated the need, addressed in this study, to 130 

systematically evaluate the performance of NWM-R2 simulations of SWE and SCAF against 131 
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available SNOTEL measurements and the moderate resolution imaging spectroradiometer 132 

(MODIS) satellite imagery to answer the following questions: 133 

• How well does the NWM model simulate snowpack (in terms of SWE, SCAF, and 134 

snowmelt timing) compare to observations over the entire Western U.S.? 135 

• What are the potential causes responsible for discrepancies in NWM-R2 SWE, SCAF, 136 

and snowmelt timing? 137 

• Are these discrepancies associated with the model input errors or the snow 138 

parameterization in the model? 139 

Answers to these questions are needed to further improve the NWM snow 140 

components, and ultimately runoff and water supply forecasts in snowmelt-dominated 141 

regions. While U.S. based, the NWM is built using the WRF-Hydro modeling framework that 142 

has been applied worldwide, and the lessons learned from this comparison across the U.S. 143 

have application to the representation of snow processes in national and continental scale 144 

models throughout the world.  145 

[Locate Figure 1 near here] 146 

The following section—Model, Data, and Experimental Design—first presents a 147 

summary of the NWM-R2 snow parameterization. Then, it describes the datasets used in this 148 

study, comprised of the NWM-R2 reanalysis products, SNOTEL snow observations, and 149 

MODIS imagery giving the snow-covered area fraction. Next, it presents the metrics that 150 

were used for evaluating the model results versus observations. The results section compares 151 

the NWM-R2 SWE, precipitation, air temperature, SCAF, and presence or absence of snow 152 

with observations from SNOTEL and MODIS. It also compares modeled and observed 153 

snowmelt timing. We conclude with a discussion of the uncertainties and limitations in our 154 

analysis and present ideas for future work.  155 

2. MODEL, DATA, and EXPERIMENTAL DESIGN  156 

The study region comprises the SNOTEL sites across the Western U.S. (Figure 2a). 157 

The model is the NWM version 2.0 reanalysis (NWM-R2), that includes Noah-MP land 158 

surface components for snow. Data include NWM-R2 inputs and outputs, in-situ 159 

measurements, and remotely sensed data from MODIS for water years 2008-2018. NWM-R2 160 

inputs that we used in our analysis were hourly NLDAS2-based precipitation, hourly 161 

NLDAS2-based air temperature, and elevation—derived from the 30 m Digital Elevation 162 

Model (Zhang et al., 2021)—with 1 km spatial resolution. We used NWM-R2 outputs of 3-163 
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hourly SWE and SCAF with 1 km spatial resolution from the land surface module. We 164 

retrieved these inputs and outputs for NWM grid cells containing SNOTEL sites based on the 165 

nearest neighbour approach. In-situ measurements comprised daily precipitation, daily air 166 

temperature, elevation, and daily SWE from SNOTEL. Remotely sensed MODIS daily snow-167 

covered areas with nominal 500 m spatial resolution were from the MODIS sensor. The 168 

model, in-situ, and remotely sensed datasets thus have different spatial resolutions (Figure 169 

2b). The difference in scale is a potential source of uncertainty in our comparative analysis, 170 

and needs to be recognized in interpretation. There are small differences in elevation between 171 

SNOTEL (point elevations) and NWM-R2 (1 km grid elevations), that may impact 172 

temperature comparisons due to lapse rate effects, but there does not appear to be any 173 

significant bias (Figure 2c).  174 

[Locate Figure 2 near here] 175 

2.1 NWM-R2 Snow Parameterization (Noah-MP) and Snow Reanalysis Products 176 

The NWM-R2 uses a particular configuration of Noah-MP (Table 1) as the land 177 

surface model to simulate snow processes as a 1-dimensional vertical column over 1 km 178 

spatial resolution grid cells with no representation of any lateral snow processes within a grid 179 

cell. Details of the NWM-R2 are given in WRF-Hydro version 5.1.1 documentation (Gochis, 180 

Barlage, Cabell, Casali, et al., 2020) and the code (Gochis, Barlage, Cabell, Dugger, et al., 181 

2020). WRF-Hydro version 5.1.1 is the WRF-Hydro version used in NWM-R2. However, 182 

(Gochis, Barlage, Cabell, Casali, et al., 2020) does not describe details of the snow 183 

parameterization. Instead reference is made to the Noah-MP technical description (Yang et 184 

al., 2011) and associated paper (Niu et al., 2011). Here we have summarized key features of 185 

the snow parameterization that pertain to the interpretation of our results. The focus in this 186 

paper is on NWM-R2 results, practically, amounts to a large-scale test of Noah-MP as 187 

configured for use in the NWM. 188 

[Locate Table 1 near here] 189 

2.1.1 Snowfall 190 

The separation of precipitation into rainfall or snowfall is based on Jordan’s (1991) 191 

algorithm that uses near surface air temperature thresholds [Equations (1-2)].  192 

𝑓𝑝,𝑖𝑐𝑒 =

{
 
 

 
 1.0                                                   𝑇𝑓𝑟𝑧 + 0.0 ≤ 𝑇𝑠𝑓𝑐 ≤ 𝑇𝑓𝑟𝑧 + 0.5

1.0 ‒ (‒  54.632 +  0.2  𝑇𝑠𝑓𝑐) 𝑇𝑓𝑟𝑧 + 0.5 ≤ 𝑇𝑠𝑓𝑐 ≤ 𝑇𝑓𝑟𝑧 + 2.0

0.6                                                   𝑇𝑓𝑟𝑧 + 2.0 ≤ 𝑇𝑠𝑓𝑐 ≤ 𝑇𝑓𝑟𝑧 + 2.5

0.0                                                   𝑇𝑓𝑟𝑧 + 2.5 ≤ 𝑇𝑠𝑓𝑐 > 𝑇𝑓𝑟𝑧 + 2.5}
 
 

 
 

 

(1) 
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𝑟𝑎𝑖𝑛 = 𝑃 × (1 − 𝑓𝑝,𝑖𝑐𝑒)

𝑠𝑛𝑜𝑤 = 𝑃 × 𝑓𝑝,𝑖𝑐𝑒
 

(2) 

where fp,ice is the snow fraction in precipitation, Tsfc [K] is the surface air temperature, Tfrz 193 

[273.16 K] is freezing/melting point, and P [mm s-1] is the input precipitation. Freshly fallen 194 

snow density (ρfs [kg/m3]) is calculated using Equation (3), based on Hedstrom and Pomeroy 195 

(1998). 196 

𝜌𝑓𝑠 = min (120, 67.92 + 51.25𝑒
(
𝑇𝑠𝑓𝑐‒𝑇𝑓𝑟𝑧

2.59
)
) 

(3) 

2.1.2 Vegetation and Snow Interception 197 

In Noah-MP, a single-layer vegetation canopy model characterizes the fraction 198 

covered by vegetation (FVEG) in each model grid cell. Since the Noah-MP dynamic 199 

vegetation option is set off in NWM-R2, the model uses the maximum vegetation fraction 200 

from the Leaf Area Index (LAI) table as FVEG. If a model grid has a FVEG>0 and a snow 201 

depth greater than 0.025 m (from initial conditions or the last time step), the model computes 202 

the fraction of canopy buried by snow based on the snow depth and the canopy height. Then, 203 

the model uses this fraction to adjust the LAI and Stem Area Index (SAI), which are used in 204 

the snow interception model. The snow interception model allows for both liquid water and 205 

ice to be present on the vegetation canopy; and includes loading/unloading of snowfall, 206 

melting of intercepted snow and refreezing of the meltwater, frost/sublimation of canopy-207 

intercepted snow, and dew/evaporation. The model solves the canopy liquid water balance 208 

[Equation (4)] and ice balance [Equation (5)] based on Niu and Yang (2004).  209 

𝜕𝑀𝑙𝑖𝑞

𝜕𝑡
= 𝑅𝑖𝑛𝑡𝑟 + (𝑅𝑑𝑒𝑤 − 𝑅𝑒𝑣𝑎) + (𝑅𝑚𝑒𝑙𝑡 − 𝑅𝑓𝑟𝑧) 

(4) 

𝜕𝑀𝑖𝑐𝑒

𝜕𝑡
= (𝑅𝑙𝑜𝑎𝑑 − 𝑅𝑢𝑛𝑙𝑜𝑎𝑑) + (𝑅𝑓𝑟𝑜𝑠𝑡 − 𝑅𝑠𝑢𝑏) + (𝑅𝑓𝑟𝑧 − 𝑅𝑚𝑒𝑙𝑡) 

(5) 

where Mliq [kg m-2] is the storage of liquid water in the canopy, and Rintr [kg m-2 s-1], Rdew 210 

[kg m-2 s-1], and Reva [kg m-2 s-1] are interception rate for rain, dew rate, and evaporation rate, 211 

respectively. Rmelt [kg m-2 s-1] and Rfrz [kg m-2 s-1] are melting and refreezing rates. Mice 212 

[kg m-2] is the storage of ice in the canopy and Rload [kg m-2 s-1] and Runload [kg m-2 s-1] are 213 

snow loading and unloading rates, respectively. Rfrost [kg m-2 s-1] and Rsub [kg m-2 s-1] are frost 214 

and sublimation rates. Heat transported by snow and rain to the vegetation canopy layer, the 215 

vegetated ground, and non-vegetated ground is also computed; and is used later in the energy 216 

balance computation. 217 

2.1.3 Snow-Covered Area and Snow Albedo 218 
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Noah-MP calculates SCAF based on snowpack density (ρsno [kg m-3]), snow depth 219 

(hsno [m]) from initial conditions or the previous time step, snow surface roughness length 220 

(z0,g [m]), density of fresh snow (ρnew [kg m-3]), and a dimensionless area-depth factor (m) that 221 

determines the curve relating SCAF and snow depth [Equation (6)] as developed by Niu and 222 

Yang (2007).  223 

𝑆𝐶𝐴𝐹 = 𝑡𝑎𝑛ℎ(
ℎ𝑠𝑛𝑜

2.5𝑧0,𝑔 (
𝜌𝑠𝑛𝑜
𝜌𝑛𝑒𝑤

)
𝑚) , 𝜌𝑠𝑛𝑜 =

𝑆𝑊𝐸

ℎ𝑠𝑛𝑜
 

(6) 

In NWM-R2 calculations of snow-covered area, ρnew and z0,g are constants set equal to 100 kg 224 

m-3 and 0.002 m, respectively. However, the factor m is among the parameters that are 225 

adjusted during calibration to minimize differences between modeled and observed 226 

streamflow over calibration watersheds (Lahmers et al., 2019; RafieeiNasab et al., 2020). The 227 

functional relationship between SCAF and depth quantifies small-scale variability of snow 228 

within a computational grid element which plays an important role in the process governing 229 

snow accumulation and ablation. SCAF is used to weight the ground emissivity and ground 230 

surface resistance. It also affects the computed snow surface albedo that is modeled using the 231 

Biosphere-Atmosphere Transfer Scheme (BATS). BATS (Yang & Dickinson, 1996) models 232 

direct and diffusive radiation in visible and near-infrared bands separately accounting for 233 

fresh snow albedo, snow age, grain size growth, impurity, and solar zenith angle. 234 

2.1.4 Surface Energy Balance, Radiation, and Momentum Fluxes 235 

Shortwave radiation is modeled over the entire grid cell using a modified two-stream 236 

approximation (Niu & Yang, 2004) treating the vegetation as evenly distributed with gaps. 237 

The result is canopy-absorbed and ground-absorbed solar radiation over the grid cell. 238 

Longwave radiation, latent heat, sensible heat, and ground heat fluxes are modeled, using a 239 

tile approach that treats vegetated and bare fractions of the cell separately (Niu et al., 2011). 240 

Noah-MP treats turbulence fluxes between the snowpack, vegetation canopy, and air using 241 

Monin-Obukhov similarity theory to model atmospheric stability conditions. Stability 242 

corrections of under canopy turbulent transfer account for the strong stable condition of a 243 

warmer canopy overlying the snow surface during the melt season (Chen, Barlage, et al., 244 

2014). Precipitation advected heat is also computed separately for the canopy vegetation, 245 

vegetated ground surface, and non-vegetated ground surface. The vegetation canopy 246 

temperature (Tv), the vegetated ground surface temperature (Tg,v), and the non-vegetated 247 

ground surface temperature (Tg,b) are estimated using the Newton-Raphson method with 20 248 

iterations. If the snow depth is greater than a specified snow depth (≥ 0.05 m) and the ground 249 
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surface temperature (Tg,v/Tg,b) is greater than the freezing point (273.16 K), the ground 250 

temperature is updated to (1‒𝑆𝐶𝐴𝐹) × 𝑇𝑔 + 𝑆𝐶𝐴𝐹 × 𝑇𝑓𝑟𝑧, and all turbulent fluxes are 251 

reevaluated. Finally, these radiative and turbulent fluxes are then aggregated based on the 252 

vegetated fraction (FVEG) parameter.  253 

2.1.5 Snowpack Vertical Discretization and Snow Thermal Properties 254 

The Noah-MP snow module uses up to three snow layers, depending on depth (from 255 

initial conditions or the last time step). The state variables for each layer are the mass of 256 

liquid water, mass of ice, layer thickness, and layer temperature. Snow can also exist in the 257 

model without being represented by explicit snow layers. This occurs when the total 258 

snowpack thickness is less than a specified minimum snow depth (< 0.025 m). In this case, 259 

the only state variable is the mass of snow. 260 

Snow thermal properties including partial volume of ice, partial volume of liquid 261 

water, effective porosity, bulk density [based on Lynch-Stieglitz (1994)], volumetric specific 262 

heat, and thermal conductivity are computed for each snow layer [Equations (7-12)]. Energy 263 

for phase change (melting/refreezing) is also computed for each layer.  264 

𝜃𝑖𝑐𝑒,𝑖 =
𝑀𝑎𝑠𝑠𝑖𝑐𝑒,𝑖
∆𝑍𝑖 × 𝜌𝑖𝑐𝑒

       
(7) 

𝜃𝑒,𝑖 = 1 − 𝜃𝑖𝑐𝑒,𝑖 (8) 

𝜃𝑙𝑖𝑞𝑢𝑖𝑑,𝑖 = min (𝜃𝑒,𝑖 ,
𝑀𝑎𝑠𝑠𝑙𝑖𝑞𝑢𝑖𝑑,𝑖
∆𝑍𝑖 × 𝜌𝑤𝑎𝑡𝑒𝑟

) 
(9) 

𝜌𝑠𝑛𝑜𝑤,𝑖 =
𝑀𝑎𝑠𝑠𝑖𝑐𝑒,𝑖 +𝑀𝑎𝑠𝑠𝑙𝑖𝑞𝑢𝑖𝑑,𝑖

∆𝑍𝑖
 

(10) 

𝐶𝑣,𝑖 = 𝐶𝑖𝑐𝑒 × 𝜃𝑖𝑐𝑒,𝑖 + 𝐶𝑙𝑖𝑞𝑢𝑖𝑑 × 𝜃𝑙𝑖𝑞𝑢𝑖𝑑,𝑖          (11) 

𝑘𝑖 = 3.2217 × 10
−6 × 𝜌𝑠𝑛𝑜𝑤,𝑖

2 (12) 

where 𝜃𝑖𝑐𝑒,𝑖 [m
-3/m-3] is partial volume ice of snow layer i, 𝑀𝑎𝑠𝑠𝑖𝑐𝑒,𝑖 [kg m-2] is snow ice mass 265 

of snow layer i, ∆𝑍𝑖 [m] is the snow layer thickness of snow layer i, 𝜌𝑖𝑐𝑒 [917 kg m-3] is ice 266 

density, 𝜃𝑒,𝑖 [m
-3/m-3] is the effective porosity of snow layer i, 𝜃𝑙𝑖𝑞𝑢𝑖𝑑,𝑖 [m

-3/m-3] is partial 267 

volume of liquid water of snow layer i, 𝑀𝑎𝑠𝑠𝑙𝑖𝑞𝑢𝑖𝑑,𝑖 [kg m-2] is liquid water mass of snow 268 

layer i, 𝜌𝑤𝑎𝑡𝑒𝑟 [1000 kg m-2] is liquid water density, 𝜌𝑠𝑛𝑜𝑤,𝑖 [kg/m-3] is bulk density of snow 269 

layer i, 𝐶𝑣,𝑖 [J m-3 K-1] is volumetric specific heat of snow layer i, 𝐶𝑖𝑐𝑒 [2.094106 J m-3 K-1] is 270 

specific heat capacity of ice, 𝐶𝑙𝑖𝑞𝑢𝑖𝑑 [4.188106 J m-3 K-1] is specific heat capacity of liquid 271 

water, and 𝑘𝑖 [W m-1 K-1] is thermal conductivity of snow layer i.  272 

Heat flux between layers is calculated based on temperature gradient and thermal 273 

conductivity, and then this is used to update layer temperatures using a semi-implicit 274 
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numerical scheme. When heat flux calculations result in temperatures of snow layers greater 275 

than freezing, the excess energy is used to adjust (melt or freeze) liquid water present. The 276 

change in the density of the snow with time due to destructive metamorphism, the weight of 277 

the overlying layers of snow, and melting (which dictates layer thickness) is modeled, 278 

following Anderson (1976) as a function of snow temperature (Niu et al., 2011). 279 

2.1.6 Snow Water Equivalent and Snow Depth 280 

The change in SWE is balanced by the input snowfall (Qsnow) reaching the surface in 281 

forms of drip and throughfall; and output snowmelt (M), snow sublimation, and snow frost 282 

[both expressed as E in Equation (13)]. 283 

𝑑𝑆𝑊𝐸

𝑑𝑡
= 𝑄𝑠𝑛𝑜𝑤 −𝑀 − 𝐸 

(13) 

When new snowfall occurs in a time step, the snow depth and snow ice are increased 284 

based on the snow depth increasing rate and the input snowfall rate (both outputs of the snow 285 

interception module), respectively. After the depth, phase change and compaction 286 

calculations, the number of snow layers is adjusted by either combining the neighbour layers 287 

or subdividing them following Jordan (1991). If rainfall (in terms of drip and throughfall) 288 

occurs, it is added to the liquid water of the snow layer. The liquid water movement within a 289 

snow layer is added to the underlying snow layer when the liquid water content within a snow 290 

layer exceeds the layer’s liquid water-holding capacity for snowpack (0.03 m3/m3). Finally, 291 

the liquid water of the snow layer updates after the water flows out of the layer.  292 

2.1.7 Post-processing NWM-R2 Snow Reanalysis Products 293 

This study used the NWM-R2’s land surface model outputs, which are geospatial 294 

gridded results with a spatial resolution of 1 km and temporal resolution of 3-hours. We 295 

obtained the NWM-R2 SWE (model code name: SNEQV) and SCAF (model code name: 296 

FSNO) for grid cells containing SNOTEL sites based on the nearest neighbour approach 297 

[code available at Garousi-Nejad and Tarboton (2021d)] from the NOAA Google Cloud 298 

archive using a Jupyter Notebook [code available at Tarboton and Garousi-Nejad (2021)]. 299 

Then, we averaged 3-hourly results to daily values [code available at Garousi-Nejad and 300 

Tarboton (2021f)] to have a similar temporal resolution when comparing the NWM-R2 301 

results with SNOTEL and MODIS observations because both these datasets produce daily 302 

data. We also obtained the hourly precipitation, hourly air temperature, and elevation input 303 

data used for NWM-R2 simulations for the selected grid cells. The WRF-Hydro team at 304 

NCAR provided precipitation and air temperature values for us as those data were not 305 
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available on the Google Cloud archive. Then, we computed daily precipitation and the daily 306 

average temperature [code available at Garousi-Nejad and Tarboton (2021f)].  307 

2.2 SNOTEL 308 

SNOTEL stations, managed by the Natural Resources Conservation Service (NRCS), 309 

generally consist of a snow pillow, an air temperature sensor, and a storage precipitation 310 

gage. Our study used the daily precipitation, air temperature, and SWE values measured at 311 

SNOTEL sites as a reference dataset to evaluate the NWM-R2 precipitation, air temperature, 312 

and SWE. We realize that SNOTEL data must be used with some caution because the sites 313 

are mostly located in small clearings within forests protected by forest canopies, leading to 314 

differences in exposure to wind and radiation (McCreight et al., 2014). Furthermore, 315 

SNOTEL data do not undergo a high correction level (Swenson & Lawrence, 2012). In some 316 

instances, we found unrealistically high temperature values that needed to be filtered out. 317 

Nevertheless, SNOTEL data remain the only widespread in situ SWE observations available 318 

for model validation in the Western U.S. (Barlage et al., 2010; Clow et al., 2012; Livneh et 319 

al., 2010; Pan et al., 2003; Toure et al., 2016). We automated retrieval of the SNOTEL data 320 

by calling its Consortium of Universities for the Advancement of Hydrologic Science, Inc 321 

(CUAHSI) web service from a Jupyter Notebook script (Garousi-Nejad & Tarboton, 2021c).  322 

2.3 MODIS 323 

The National Aeronautics and Space Administration (NASA)’s MODIS instrument 324 

launched aboard the Terra satellite in late 1999 is designed to observe and monitor Earth 325 

changes, such as snow cover. MODIS has spectral bands in the visible and near-infrared 326 

regions, nominal 500 m spatial resolution, and near-daily global coverage. The daily snow-327 

cover gridded tile product, MOD10A1, has been used and improved over time in multiple 328 

snow studies (Aalstad et al., 2020; Bennett et al., 2019; Magand et al., 2014; Masson et al., 329 

2018; Salomonson & Appel, 2006; Swenson & Lawrence, 2012). We used products from the 330 

current version of the MODIS snow-cover algorithm which is the collection 6 suite of 331 

MODIS (hereafter referred to as MODIS-C6, or just MODIS). We chose to use MODIS-C6 332 

(Hall & Riggs, 2016) as a reference to evaluate NWM-R2 SCAF because the 333 

improvements/revisions to MODIS-C6 (i.e., accounting for the surface temperature and 334 

surface height) led to a notable increase in accuracy of snow cover detection on mountain 335 

ranges and low illumination conditions in the Northern Hemisphere during spring and 336 

summer (Riggs et al., 2017).  337 

The MODIS-C6 snow algorithm is designed to detect snow cover based on the 338 

normalized ratio of the differences in reflectance in band 4 (centred at 0.56 μm, visible green) 339 
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and band 6 (centred at 1.64 μm) of the MODIS instrument with revisions applied to alleviate 340 

snow detection commission errors (reported for previous versions) for which snow detection 341 

is uncertain. The MODIS-C6 products include this ratio, the Normalized Difference Snow 342 

Index (NDSI, product name: NDSI_Snow_Cover) rather than snow cover. This approach 343 

allows users to have the option to estimate snow cover using the global empirical model 344 

[Equation (14)] or develop region-specific models (Riggs et al., 2016). In this study, we 345 

developed a script (Garousi-Nejad & Tarboton, 2021b) run in Google Earth Engine to 346 

retrieve NDSI_Snow_Cover for each NWM grid cell containing a SNOTEL site. Since 347 

MODIS output is available on a 500 m grid and NWM grid cells are 1 km in size, the script 348 

averaged NDSI_Snow_Cover over the four MODIS grid cells that have their centroid within 349 

the NWM grid cell (Figure 2). Valid NDSI_Snow_Cover values range between 0-100 with 350 

values above 100 indicating missing data, no decision, night, inland water, ocean, cloud, and 351 

detector saturated issues, which we masked out in Google Earth Engine. The returned 352 

MODIS images thus have spatial gaps due to this masking. We filled gaps in each image with 353 

NDSI_Snow_Cover from the most previous valid value (forward filling). Then, we applied 354 

the globally-determined linear model of Riggs et al. (Riggs et al., 2016) to compute MODIS 355 

SCAF from NDSI_Snow_Cover values [Equation (14)].  356 

SCAF = min[max(-0.01 + 1.45 × NDSI, 0 ), 1] where NDSI ∈ [0,1] (14) 

In Equation (14), the MODIS SCFA is always estimated as 1 for NDSI values equal or 357 

greater than 0.7, and it changes linearly for NDSI values between 0 to 0.7.  358 

The resulting dataset includes 2,504,102 site-days in the period of overlap between 359 

NWM-R2 and SNOTEL data [data and code used to aggregate it are available at Garousi-360 

Nejad and Tarboton, (2021e)]. We organized the SNOTEL sites into subgroups using 361 

Omernik Ecoregions level III (Omernik & Griffith, 2014) available from the Commission for 362 

Environmental Corporation (http://www.cec.org/north-american-environmental-363 

atlas/terrestrial-ecoregions-level-iii/) to identify regional differences in model results versus 364 

observations. The ecoregions are areas with general similarities in location, climate, 365 

vegetation, hydrology, terrain, wildlife, and land use; and have been used in multiple prior 366 

studies (Sun et al., 2019; Trujillo & Molotch, 2014).  367 

2.4 Metrics 368 

http://www.cec.org/north-american-environmental-atlas/terrestrial-ecoregions-level-iii/
http://www.cec.org/north-american-environmental-atlas/terrestrial-ecoregions-level-iii/
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We used several metrics to compare NWM-R2 snow water equivalent (SWE), snow 369 

covered area fraction (SCAF), precipitation (P), and snowmelt timing against SNOTEL SWE 370 

and MODIS-C6 SCAF. 371 

Seasonal  372 

• First day of the month comparisons were used for NWM-R2 SWE/SCAF 373 

(modeled) versus SNOTEL SWE and MODIS SCAF (observed) for months Nov-374 

Jun.  375 

• Monthly precipitation and average air temperature were also compared for 376 

these months.  377 

These monthly comparisons let us evaluate the seasonal variability of snow in both 378 

modeled and observed datasets for data in the period of overlap between NWM-R2 and 379 

SNOTEL data.  380 

Snow Water Equivalent and Snow-Covered Area at peak SWE 381 

• Modeled and observed SWE and SCAF were compared on the date of observed 382 

peak SWE (same day comparison).  383 

• Modeled and observed peak SWE do not necessarily occur on the same date. We 384 

compared both SWE and SCAF on the separate dates where peak SWE was 385 

modeled and observed (different day comparison).  386 

• Model input and SNOTEL observed total precipitation accumulated from the start 387 

of the water year, Oct 1, to the date of peak SWE were also compared. 388 

Total precipitation was computed to assess the degree to which differences may be 389 

attributable to precipitation differences. This was done for both same day (observed peak 390 

SWE) and different day (observed and modeled peak day) comparisons. The different peak 391 

day comparison addresses the possibility that peak modeled and observed SWE may be close, 392 

but appear further apart in same day comparisons due to a timing mismatch.  393 

Direct (binary) comparison of snow presence or absence 394 

• Full snow cover. Daily modeled SCAF taken as full snow if SCAF is ≥ 0.95. 395 

Daily MODIS inferred (observed) SCAF taken as full snow if NDSI is ≥ 0.7. 396 

• Some snow cover. Daily SCAF taken as indicating some snow if modeled SCAF, 397 

or MODIS NDSI > 0.3.  398 

First, we classified the snow presence or absence grid cells based on these thresholds. 399 

We then counted the number of classified grid cells for both observed and modeled datasets 400 

for each date. This was done only for grid cells locations where SNOTEL sites exist, because 401 
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our scripts extracting NWM output were only run at these locations and running for all grid 402 

cells across the Western U.S. was computationally prohibitive.  403 

• Presence Absence comparison metrics were used to indicated the degree-of-404 

overlap between modeled and observed datasets (Horritt & Bates, 2002; Sangwan 405 

& Merwade, 2015).  406 

The correctness metric [Equation (15)] compares the total number of modeled and 407 

observed grid cells having some or full snow cover, while the fit metric [Equation (16)] 408 

quantifies whether modeled and observed locations match, scaled by the total area mapped 409 

with snow (either full or some).  410 

𝐶𝑡 = 
𝑀𝑜𝑑𝑒𝑙𝑒𝑑𝑠𝑛𝑜𝑤
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑠𝑛𝑜𝑤

  
(15) 

𝐹𝑡= 
𝑀𝑜𝑑𝑒𝑙𝑒𝑑𝑠𝑛𝑜𝑤 ∩ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑠𝑛𝑜𝑤
𝑀𝑜𝑑𝑒𝑙𝑒𝑑𝑠𝑛𝑜𝑤 ∪ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑠𝑛𝑜𝑤

 
(16) 

where Ct and Ft are correctness and fit metrics computed for date t, respectively, and 411 

Modeledsnow and Observedsnow are grid cells classified as snowy cells on that date. 412 

Correctness (Ct) and Fit (Ft) should both ideally be 1 (100%). 413 

To account for the fact that MODIS may be interpreting vegetated grid cells as snow 414 

free and thus underestimating the snow cover (Steele et al., 2017; X. Wang et al., 2017), 415 

while NWM-R2 may have snow beneath the vegetation canopy, and that SNOTEL sites are 416 

often in openings much smaller than the cell size (1 km) in generally forested areas, we 417 

requested, and obtained from the NRCS (the agency that operates SNOTEL) a list of sites in 418 

generally open areas. We report separate metrics for these sites reported to be open. The 419 

NRCS indicated that SNOTEL sites may be open due to canopy disturbance caused by pine 420 

bark beetle damage and fire, which may have occurred during the study period, resulting in 421 

some uncertainty as to sites being open early on.  422 

Melt timing 423 

•  Half melt from peak SWE date (Clow, 2010).  424 

The date, when half the snowpack has melted serves as a measure of melt timing 425 

somewhat robust to small fluctuations or a long period where SWE is flat near the peak. We 426 

categorized the differences between observed and modeled half melt dates as close (within 5 427 

days), model early (the model is 6 to 19 days ahead of observed), model late (the model is 6 428 

to 19 days after observed), and far apart (the modeled and observed differ by 20 days or 429 

more). 430 
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Commonly used statistics  431 

• Coefficient of determination [r2, Equation (17)] that ranges from -1 to 1 with 1 432 

indicating a perfect positive linear relationship but insensitive to proportional 433 

differences between modeled and observed data;  434 

• Spearman’s rank correlation [Spearmanr, Equation (18)], a non-parametric 435 

measure of correlation used to measure the strength of association between 436 

modeled and observed values where value 1 means a perfect positive correlation; 437 

• Root mean square error [RMSE, Equation (19)], a measure of how concentrated 438 

the data are around the line of best fit; 439 

• Nash Sutcliffe efficiency [NSE, Equation (20)], a normalized statistic that 440 

determines the relative magnitude of the residual variance compared to observed 441 

values ranging from - to 1 with 1 indicating observed and modeled data fits the 442 

1:1 line; and 443 

• Bias [Bias, Equation (21)], the average of the difference between modeled and 444 

observed.  445 

r2= 

[
 
 
 

∑ (Mt-O̅t)(Mt-M̅t)
N
t=1

√∑ (Ot-O̅t)2∑ (Mt-M̅t)2
N
t=1

N
t=1 ]

 
 
 
2

 

(17) 

Spearmanr =  1-
6∑ dt

2N
t=1

N(N2-1)
 

(18) 

RMSE = √
∑ (Ot-Mt)2
N
t=1

N
  

(19) 

NSE =  1- 
∑ (Ot-Mt)

2N
t=1

∑ (Ot-Mt)2
N
t=1

 
(20) 

Bias = 
∑ (Mt-Ot)
N
t=1

N
 

(21) 

where Mt is model simulation, Ot is observation, N is the total number of simulations 446 

or observations, dt is difference between observed and modeled rank, and the overbar 447 

indicates average. 448 
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3. RESULTS  449 

3.1 Seasonal (Monthly) Comparison  450 

We compared the NWM-R2 SWE results with observations from SNOTEL and found 451 

a persistent bias in modeled SWE across most months (Figure 3). Results show that 452 

throughout the accumulation phase (Nov-Feb), the rank correlation between observed and 453 

modeled SWE increases (Spearmanr from 0.7 to 0.8). However, this does not necessarily 454 

indicate an acceptable model performance. The discrepancies between the observed and 455 

modeled SWE increase as snow accumulates (RMSE 21 to 135 mm). In the ablation phase 456 

(Mar-Jun), the rank correlation decreases, and discrepancies are highest in May (Bias -149 457 

mm, RMSE 292 mm). The increasing scatter in later months (Figure 3) shows that the NWM 458 

generally performs well during the accumulation phase but simulates SWE less well during 459 

the ablation phase. Most points fall below the 1:1 line (red line). The points clustered into 460 

vertical and horizontal lines on the bottom and left axes of scatter plots in May and Jun 461 

indicate early and late modeling of complete melt out, respectively. 462 

[Locate Figure 3 near here] 463 

The comparison between the NWM-R2 SCAF and estimates from MODIS-C6 464 

revealed that the modeled SCAF is highly uncorrelated with what is detected by satellite 465 

imagery (Figure 4). Throughout the last three months of the accumulation phase (Dec-Feb), 466 

the NWM results show that more than 70% of points (each representing one NWM grid cell 467 

that includes a SNOTEL site and a water year) have SCAF 0.9-1, while less than 10% have 468 

SCAF 0-0.1 (histograms in Figure 4). In contrast to the binary behaviour of the NWM-R2 469 

SCAF, MODIS SCAF exhibits gradual increases and decreases. At most, 30% of the 470 

observed data have SCAF values ranging from 0.9-1 during the accumulation phase. In 471 

December, 14% of the observed data have SCAF greater than 0.9, while about 70% of 472 

modeled points have SCAF greater than 0.9. During the ablation phase (Mar-Jun), both 473 

modeled and observed datasets have relatively a similar data percentage with SCAF less than 474 

0.1. However, the portion of the points where modeled SCAF is above 0.9 is still much more 475 

significant (3-7 times depending on the month) than those in the observed dataset (histograms 476 

in Figure 4).  477 

[Locate Figure 4 near here] 478 

The SCAF comparisons above are only at SNOTEL sites. We did not undertake the 479 

computation needed to compare NWM-R2 and MODIS-C6 for all grid cells and dates. 480 

However, as an illustration for locations beyond SNOTEL sites NWM-R2 and MODIS-C6 481 
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SCAF maps on Dec 1, 2011 (Figure 5) show that while patterns are generally the same, 482 

MODIS SCAF seems less than modeled. Note that the MODIS-C6 SCAF map (Figure 5a) 483 

has gaps and cloud areas (grey) that we did not fill in from the most recent previous image 484 

with data (as described in Section 3) for this visualization. NWM-R2 SCAF covers the entire 485 

region selected based on the MODIS tiles. The visual comparison of a zoomed-in map for the 486 

region where observed SCAF were available for more than 90% of the area reveals both 487 

similarities and differences between NWM-R2 and MODIS-C6 datasets (Figure 5c and 5d). 488 

The NWM-R2 SCAF map for the zoomed-in area shows more white regions (i.e., SCAF 489 

values greater than 0.9), suggesting that NWM tends to overestimate SCAF compared to 490 

observations from MODIS. 491 

[Locate Figure 5 near here] 492 

Scatterplots of monthly precipitation (Figure 6) indicate model input precipitation 493 

generally less than measured at SNOTEL sites, possibly contributing to under-modeling of 494 

SWE (Figure 3). Spearmanr and NSE values show an acceptable correlation between 495 

modeled and observed monthly precipitation (on average, 0.8 for both statistics). However, 496 

the precipitation bias is larger during the accumulation phase than the ablation phase, 497 

suggesting that increased SWE scatter, in the ablation phase, is less associated with 498 

precipitation input errors than other factors during the ablation phase snowmelt. 499 

[Locate Figure 6 near here] 500 

Elevation, through orographic effects, is often suspected as a contributor to 501 

precipitation bias. However, the comparison of model input elevation (1 km grid cell) with 502 

SNOTEL point elevation (Figure 2) indicated no bias and small scatter (r2=0.98 in Figure 2c). 503 

There are, nevertheless, discrepancies between the NWM-R2 monthly averaged air 504 

temperature inputs and the monthly averages of the daily mean air temperature measured at 505 

SNOTEL sites (Figure 7), reported as the 24-hour average of a minimum four samples per 506 

hour (U.S. Department of Agriculture, 2011). NWM-R2 air temperatures are generally 507 

slightly below observations. This is counter to the direction needed to explain discrepancies 508 

in SWE as colder model input air temperatures should result in (1) greater fractions of 509 

precipitation as snowfall and (2) slower rather than quicker snowmelt, both processes that 510 

increase rather than decrease SWE. 511 

[Locate Figure 7 near here] 512 

The seasonal pattern of SWE and SCAF averaged across all SNOTEL site years for 513 

each specific day (Figure 8) further indicates the general under modeling of SWE and over 514 

modeling of SCAF relative to SNOTEL and MODIS observations, respectively.  515 
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[Locate Figure 8 near here] 516 

Discrepancies between the seasonal pattern of SWE and SCAF are regional and 517 

somewhat different for SWE than SCAF (Figure 9 and Figure 10, respectively). The NWM 518 

SWE was better in the Klamath Mountains, Blue Mountains, and Central Basin and Range 519 

(region 9, 2, and 5, respectively, in Figure 9) with SWE bias differences tending to become 520 

larger further to the north and east across the study region. However, the NWM SCAF are 521 

closer to the observations in the Northern Basin and Range, Sierra Nevada, and Central Basin 522 

and Range regions (regions 12, 13, and 5, respectively, in Figure 10), with SCAF differences 523 

tending to become larger the further away regions are from the Central Basin and Range 524 

region. 525 

[Locate Figure 9 near here] 526 

[Locate Figure 10 near here] 527 

3.2 Observed Peak SWE (Same Day and Different Day) Comparison  528 

The scatterplot of modeled versus observed SWE on the date of peak observed SWE 529 

(Figure 11a) indicates a general downward bias in modeled SWE. NWM SCAF clusters 530 

around 1 on this date (histograms in Figure 11b) while MODIS SCAF is more fractional, and 531 

similar to monthly SCAF the point comparisons are scattered and poor. Precipitation 532 

accumulated from Oct 1 to the date of observed peak SWE indicates model input 533 

precipitation generally less than SNOTEL observed (Figure 11c: Bias -111 mm, RMSE 212 534 

mm). This suggests that under estimation of model precipitation inputs may be a contributor 535 

to under modeling of peak SWE. This comparison may also be influenced by the fact that 536 

observed SWE is at its peak, but modeled SWE is not. 537 

[Locate Figure 11 near here] 538 

We also compared observed and modeled peak SWE, noting that these do not 539 

necessarily occur on the same date (Figure 12). Results are similar to the observed peak SWE 540 

date comparison. Here the accumulated observed and modeled precipitation (Figure 12c) are 541 

over the accumulation period, to their respective peak SWE dates, a possible reason for 542 

increased scatter and poorer error metrics in this figure. 543 

[Locate Figure 12 near here] 544 

Under modeling of SWE is also evident when comparing the observed and modeled 545 

peak SWE for a subset of SNOTEL sites where the model precipitation is relatively close to 546 

the observed (Figure 13b: Bias -96 mm, RMSE 168 mm). However, the errors are less than 547 

for the entire dataset SWE comparison. We chose this subset of sites based on the NSE 548 

measure between daily model input and observed precipitation being greater than or equal to 549 
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0.9 computed over the full study period. This subset shows a reduced bias (compared to the 550 

entire dataset) between the observed and modeled precipitation accumulated from Oct 1 to 551 

peak observed SWE date (Figure 13a). 552 

[Locate Figure 13 near here] 553 

3.3 Direct (Binary) Comparison of Snow Presence or Absence  554 

The cell by cell binary comparison of snowy grid cells at SNOTEL sites shows that 555 

this comparison does not work well for the all-snow-present condition, i.e., when the 556 

observed and modeled SCAF thresholds were 0.7 and 0.95, respectively (Figure 14a). We 557 

observed that the average C for the entire period of study was 9.4 and average F, 0.11. These 558 

are poor degree of overlap statistics, and are due to the fact that MODIS never reports more 559 

than about 30% of the area as having full snow.  560 

[Locate Figure 14 near here] 561 

However, the cell by cell binary evaluation for some snow present resulted in better 562 

degree of overlap statistics (Figure 14b, 𝐶̅=1.47 and �̅�=0.50). Discrepancies between the 563 

modeled and observed snowy grid cells as implied by average C (=1.20) and F (=0.64) were 564 

even less when we only focused on the 62 SNOTEL sites (about 8% of all sites) reported as 565 

open (Figure 14c). Table 2 summarizes fit metrics for the snow cover binary comparison. 566 

[Locate Table 2 near here] 567 

3.4 Melt Timing Comparison  568 

For 68% of the site years analyzed, the modeled half melt date was earlier than 569 

observed. When further classified based on whether modeled half melt dates were close, 570 

ahead, behind or far apart from observed melt dates (Figure 15a) we observe that the NWM 571 

half melt date was greater than 20 days from observed half melt date, for 34% of the site 572 

years, and off by 6 days or more for 75% of site years. For those site years where the 573 

difference was between 5 and 20 days, a greater percentage had the model melting ahead, 574 

than behind the observed. The site years that have modeled half melt date ahead of observed 575 

tend to have lower modeled half melt date SWE (which is by definition half the peak SWE) 576 

than observed (Figure 15b). 577 

[Locate Figure 15 near here] 578 

4. DISCUSSION  579 

The seasonal pattern of SWE and SCAF averaged across all SNOTEL site-years 580 

shows that NWM generally under-estimates SWE and over-estimates SCAF relative to 581 

SNOTEL and MODIS observations, respectively. These discrepancies vary regionally with 582 
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relatively better SWE results in the Arizona/New Mexico Mountains, Blue Mountains, and 583 

Central Basin and Range ecoregions; and better SCAF results in the Central Basin and Range 584 

and Sierra Nevada ecoregions tending to become larger the further away regions are from the 585 

Central Basin and Range. There are several sources of uncertainties in our comparisons that 586 

need to be pointed out. The spatial scale differences in different datasets is a source of 587 

uncertainty in this analysis. A point-scale measurement of SWE cannot with confidence 588 

validate the NWM-R2 grid cell value with nearest center, particularly in forest regions 589 

(McCreight et al., 2014). We realize that using other approaches, such as bilinear or cubic 590 

interpolation of NWM grid values would give different values at each SNOTEL site, a 591 

question we did not explore. In the cell by cell comparison between NWM-R2 and MODIS-592 

C6 datasets, the mean value of MODIS grid cells would be different if using a different 593 

number of cells, e.g. nine grid cells instead of four.  594 

Precipitation discrepancies suggest that SWE differences are partly due to 595 

discrepancies between observed precipitation (SNOTEL) and model input precipitation 596 

[adjusted NLDAS-2 (RafieeiNasab et al., 2020)]. There are multiple possible sources of 597 

uncertainty that may lead to this difference. First, SNOTEL latitude and longitude locations 598 

may not be precise in the geographic information from SNOTEL, as, for site security, exact 599 

site locations may not be reported. This may result in selecting a non-representative 1 km 600 

NWM grid cell. Second, there may be systematic bias for gage precipitation, particularly with 601 

snowfall measurements being subject to “under-catch” (Mote, 2003; Sun et al., 2019). 602 

However, we note that model input precipitation was typically less than measured at 603 

SNOTEL sites, indicating that if under‐catch is an issue, it may be larger in the data used to 604 

produce model inputs. In NWM version 2.0, a mountain mapper adjustment has been applied 605 

to obtain input precipitation from NLDAS-2 (RafieeiNasab et al., 2020); nevertheless, there 606 

are still differences and biases compared to SNOTEL measurements that may be impacting 607 

model results. Third, SNOTEL data do not undergo a high correction level (Swenson & 608 

Lawrence, 2012). It was not uncommon to see accumulated precipitation less than SWE at 609 

SNOTEL sites (notably for stations at higher elevations), which could be due to either 610 

precipitation under-catch, or inflated SWE (Meyer et al., 2012). This makes using this 611 

information for model comparison challenging, as the model cannot accumulate more snow 612 

than its precipitation input. This is an unresolvable difference and should be recognized as a 613 

source of uncertainty associated with the in-situ measurements used in this study.  614 

Our results show a cold (downward) bias for the model input air temperature (based 615 

on NLDAS-2) compared to SNOTEL sites' observations. This is different from Naple et al. 616 
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(2020), who reported a warm (upward) bias for the NWM retrospective runs compared to the 617 

New York State Mesonet observations. The cold bias in the model temperature input is 618 

counter to the direction expected to lead to the under-modeling of SWE, a point which needs 619 

more investigation. 620 

 The discrepancies in model inputs (precipitation and air temperature in this study) are 621 

not the only potential sources for SWE differences. Even at sites with statistically highly 622 

correlated precipitation input (NSE>0.9), the results indicate that some SWE bias, potentially 623 

due to other factors, still remains. This opens up the question as to whether there are other 624 

deficiencies that lead to SWE under-modeling, both due to observation and model errors. 625 

Errors in SWE measurements may occur, due to factors such as wind causing snowdrifts on 626 

the snow pillow (Meyer et al., 2012), or the small clearing SNOTEL site location not being 627 

representative of larger scale snowpack (McCreight et al., 2014). In the NWM land surface 628 

model (Noah-MP), the partitioning of precipitation into rainfall and snowfall, which is one of 629 

the most sensitive parameterizations in simulating cold‐region hydrological processes (Loth 630 

et al., 1993), is based on Jordan’s (1991) algorithm, which ignores some physical processes 631 

controlling precipitation phase by not incorporating humidity. This may lead to biases in 632 

SWE, snow depth, and snow cover fraction (Chen, Liu, et al., 2014; Harder & Pomeroy, 633 

2014; Y. Wang et al., 2019). Y. Wang et al. (2019) suggest that using a snow-rain 634 

partitioning scheme based on the wet-bulb temperature within Noah-MP produces more 635 

snowfall and snow mass on the ground that agrees better with ground-based snow 636 

observations, particularly over mountainous regions in the Western U.S. Recently, Naple et 637 

al. (2020) shows that using the precipitation phase partition from the high-resolution rapid 638 

refresh (HRRR), in lieu of the operational method (Jordan, 1991), leads to improved snow 639 

results for the NWM version 2.0 configuration.  640 

Our results show that, on average, the NWM tends to melt snow early (6-19 days) 641 

compared to SNOTEL observation. For 75% of the site years, the modeled date of half melt 642 

from peak SWE was off by 6 days or more from the observed half melt dates, sometimes 643 

being as far apart as 2 months (for example, Magic Mountain SNOTEL site, ID: 610 in 644 

Idaho, at water year 2010). This suggests that the modeling of melt timing is somewhat 645 

problematic and there is a need to further investigate overall energy balance and snow surface 646 

temperature, possibly drawing on ideas from the Utah Energy Balance model (Mahat & 647 

Tarboton, 2014; You et al., 2014).  648 

Overall, NWM-R2 SCAF was difficult to compare to MODIS-C6 SCAF using single 649 

SNOTEL sites and days. Some of this difficulty—manifested in the scatter in Figures 4, 11, 650 
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and 12—may reflect the fact that the MODIS and NWM SCAF quantities are not really the 651 

same thing. MODIS may be interpreting vegetation as snow free (Steele et al., 2017; X. 652 

Wang et al., 2017), while NWM has snow beneath vegetation. In NWM-R2 results, the 653 

persistent low and high SCAF (<0.1 and >0.9, respectively) reflects that NWM treats SCAF 654 

as a binary metric in mountainous regions. NWM-R2 SCAF values stay near 1 with less 655 

variability between Dec-Apr for more than 70% of cases. This suggests that once the NWM 656 

grid cell (1 km spatial resolution) is more than 90% snow-covered, it is implausible for it to 657 

diverge from 1 for the rest of the accumulation phase and early ablation phase. One possible 658 

reason for this behaviour is the lack of representation of some factors affecting SCAF such as 659 

vegetation type and seasonal change, and topography. These limitations affect the accurate 660 

simulation of SCAF and SWE (Helbig et al., 2015; Magand et al., 2014; Swenson & 661 

Lawrence, 2012; Wrzesien et al., 2015). Another possible reason for some of the differences 662 

is the lack of any representation of snow drifting processes (i.e., wind-driven redistribution of 663 

snow) in the snow model. Snow drifting increases the variability of snow depth within a grid 664 

cell, which then, when melting starts leads to intervening (non-binary 0 or 1) snow covered 665 

area fractions. This may be a factor contributing to differences in regions with modeled 666 

SCAF less than 10% while the observed SCAF are more than 50% (points along the 667 

horizontal axis of SCAF on March 1, April 1, and May 1 in Figure 4).  668 

We recognize that the SCAF mapped from MODIS in this study also has uncertainties 669 

and limitations. First, the temporal forward filling approach that we used to fill gaps 670 

associated with clouds may miss some of the daily variability of snow cover, particularly in 671 

mountainous regions. Second, the parameters of Equation (14), which estimates SCAF from 672 

MODIS-C6 NDSI_Snow_Cover product, were those from Salomonson and Appel (2006) and 673 

were constant for our entire study region. Adjusting these parameters to improve the snow 674 

cover products from MODIS regionally has been suggested (Riggs et al., 2017). Third, 675 

MODIS NDSI_Snow_Cover grids (nominally 500 m) were averaged for 1 km NWM grid 676 

cells, using an unweighted approach in the Google Earth Engine platform. This approach 677 

selects MODIS grids whose centers fall within the target area (i.e., NWM grid cells). These 678 

scale differences may be a further source of uncertainty, compounded by the nonlinearity in 679 

Equation (14) [plateau at NDSI > 0.7] having an impact on SCAF from averaged NDSI.  680 

Results for the direct (binary) comparison of full snow cover were poor as MODIS 681 

never reports more than about 30% of the area as having full snow, while the degree-of-682 

overlap between the modeled and observed results, in terms of average C and F, improved 683 

considerably when comparing cells having some snow present. We interpret this as a 684 
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shortcoming of MODIS for this sort of comparison, perhaps due to the presence of 685 

vegetation. MODIS SCAF estimates may not account for snow beneath the canopy due to 686 

incapability of the sensor to see forest gaps (the snow-covered ground) through the vegetation 687 

canopy (Steele et al., 2017; X. Wang et al., 2017), while the NWM-R2 land surface model 688 

(Noah-MP) may estimate snow under the vegetation canopy in these locations. Our results 689 

show that discrepancies between modeled and observed snowy grid cells reduce when we 690 

focus only on the SNOTEL sites reported as open. For full snow present average C improves 691 

from 9.41 to 6.18 while average F improves from 0.11 to 0.16. These are still poor, but less 692 

poor. For some snow present average C improves from 1.47 to 1.2 and average F improves 693 

from 0.5 to 0.64, making them reasonably respectable, in comparison to the ideal values of 1. 694 

This suggests that forest vegetation is a dominant contributor to the disagreement between 695 

model and MODIS observed snow cover.  696 

5. CONCLUSIONS 697 

A cell by cell comparison for sites and dates in the period of overlap between 698 

SNOTEL SWE with modeled SWE from NWM-R2 simulations, in general, shows that there 699 

is a tendency for the NWM-R2 configuration to under-estimate SWE early in the season and 700 

become progressively more biased late in the season compared to in-situ observations of 701 

SWE. When aggregated across all sites and years, seasonal variations show an overall 702 

downward bias of about 55 mm with NSE 0.75 which varies regionally over Omernik 703 

ecoregions. SWE discrepancies are attributed to errors in inputs, notably precipitation and air 704 

temperature. The downward bias in precipitation input contributes to the downward biases in 705 

SWE and the SWE bias is persistent even when the model precipitation input is relatively 706 

close to the observed precipitation at SNOTEL sites with daily precipitation NSE higher than 707 

0.9. However, the cold bias in the model temperature input is counter to the direction 708 

expected to lead to under-modeling of SWE. This needs further exploration. There is a 709 

significant variability between the MODIS SCAF and NWM SCAF in the cell by cell 710 

comparison for sites and dates in the period of overlap between model results and 711 

observations which hindered useful interpretation of these comparisons. The challenge in 712 

simulating SCAF is in part due to the model SCAF essentially being binary as it lacks 713 

representation of vegetation and topography while observations are much more fractional. 714 

They may not reflect the same physical quantity. The binary comparison of full snow 715 

presence reveals that the degree-of-overlap between the modeled and observed results still 716 

remains poor, which is possibly due to uncertainties associated with MODIS observations in 717 
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vegetated areas. Results of the binary comparison of some snow presence improves when we 718 

focus only on the SNOTEL sites reported as open (average C=1.2 and average F=0.64). Also, 719 

when aggregated across all sites and years, seasonal variations show an overall upward bias 720 

of 0.12 with NSE 0.76 which vary regionally for ecoregions. Our investigation opens some 721 

new questions for future research. First, it emphasizes the importance of having a more 722 

accurate (bias corrected) precipitation and air temperature input for the NWM. Second, there 723 

is a question as to whether, in circumstances where there is disagreement between the NWM 724 

SCAF (estimated by the Noah-MP module) and MODIS observations in the binary 725 

comparison, the SCAF parameterization should be improved or can be inferred from satellites 726 

while considering the uncertainties associated with these products. Using satellite-based 727 

snow-covered maps may potentially provide an approach or an opportunity for estimating 728 

SCAF as a way to overcome limitations associated with parameterization of SCAF in the 729 

snow model. However, there would need to be resolution of differences in definition of the 730 

physical quantity being compared. Overall, our evaluation effort identifies some challenges in 731 

the current snow parameterization within the specific settings of the Noah-MP as 732 

implemented in the NWM-R2 configuration and suggests where potential development effort 733 

should be directed in the future. It would also be helpful, for future work, to have a more 734 

comprehensive observation data set, beyond the SNOTEL sites, such as possibly Critical 735 

Zone Observatory (CZO) or experimental forest sites, that include snowfall/rainfall 736 

measurements, canopy snow interception, turbulence and radiation fluxes above and below 737 

the canopy. Another opportunity is to run the model at higher resolution which would involve 738 

downscaling the forcing inputs to higher resolution. Higher-resolution remotely sensed snow-739 

covered area (e.g., from LANDSAT satellite) could then be used for model evaluation.  740 

DATA AVAILABILITY 741 

All data sources used in this research are publicly available.  742 

• The NWM-R2 are available at the NOAA Google Cloud archive at 743 

https://console.cloud.google.com/storage/browser/national-water-model-v2?pli=1. 744 

The precipitation and air temperature inputs prepared by the WRF-Hydro NCAR 745 

team, we have made available on HydroShare for reproducibility (Garousi-Nejad & 746 

Tarboton, 2021f). The NWM elevation dataset is available at 747 

https://www.nco.ncep.noaa.gov/pmb/codes/nwprod/nwm.v2.0.4/parm/domain/  748 

• The NRCS SNOTEL data are available at https://www.wcc.nrcs.usda.gov/snow/  749 

https://console.cloud.google.com/storage/browser/national-water-model-v2?pli=1
https://www.nco.ncep.noaa.gov/pmb/codes/nwprod/nwm.v2.0.4/parm/domain/
https://www.wcc.nrcs.usda.gov/snow/
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• The NASA MODIS data are available at https://nsidc.org/data/MOD10A1/versions/6 750 

• The Omernik ecoregions are available at http://www.cec.org/north-american-751 

environmental-atlas/terrestrial-ecoregions-level-iii/  752 

All codes developed for this research are shared and publicly available as a collection on 753 

HydroShare (Garousi-Nejad & Tarboton, 2021a) comprised of: 754 

• Input data and code to get the indices of the NWM grid cells containing SNOTEL 755 

sites (Garousi-Nejad & Tarboton, 2021d)  756 

• Input data, code to retrieve the NWM-R2 inputs and outputs at SNOTEL sites 757 

(Tarboton & Garousi-Nejad, 2021) 758 

• Input data, code and output from post-processing the retrieved NWM-R2 inputs and 759 

outputs at SNOTEL sites (Garousi-Nejad & Tarboton, 2021f) 760 

• Input data and code to retrieve precipitation, air temperature, and SWE measurements 761 

at SNOTEL sites (Garousi-Nejad & Tarboton, 2021c) 762 

• Input data and Google Earth Engine code to retrieve averaged MODIS-C6 NDSI 763 

snow cover at SNOTEL sites (Garousi-Nejad & Tarboton, 2021b) 764 

• Input data, code and output from combining the NWM inputs and outputs with 765 

observations form SNOTEL and MODIS at SNOTEL sites (Garousi-Nejad & 766 

Tarboton, 2021e) 767 

• Input data, code and output used to produce Figures 1-4 and Figures 6-15 (Garousi-768 

Nejad & Tarboton, 2021g) 769 

REFERENCES 770 

Aalstad, K., Westermann, S., & Bertino, L. (2020). Evaluating satellite retrieved fractional 771 

snow-covered area at a high-Arctic site using terrestrial photography. Remote Sensing 772 

of Environment, 239, 111618. https://doi.org/10.1016/j.rse.2019.111618 773 

Anderson, E. A. (1976). A point energy and mass balance model of a snow cover (NOAA 774 

Technical Report NWS 29). National Weather Service. 775 

https://repository.library.noaa.gov/view/noaa/6392 776 

Barlage, M., Chen, F., Tewari, M., Ikeda, K., Gochis, D., Dudhia, J., Rasmussen, R., Livneh, 777 

B., Ek, M., & Mitchell, K. (2010). Noah land surface model modifications to improve 778 

https://nsidc.org/data/MOD10A1/versions/6
http://www.cec.org/north-american-environmental-atlas/terrestrial-ecoregions-level-iii/
http://www.cec.org/north-american-environmental-atlas/terrestrial-ecoregions-level-iii/


26 

 

snowpack prediction in the Colorado Rocky Mountains. Journal of Geophysical 779 

Research, 115(D22), D22101. https://doi.org/10.1029/2009JD013470 780 

Bennett, K. E., Cherry, J. E., Balk, B., & Lindsey, S. (2019). Using MODIS estimates of 781 

fractional snow cover area to improve streamflow forecasts in interior Alaska. 782 

Hydrology and Earth System Sciences, 23(5), 2439–2459. 783 

https://doi.org/10.5194/hess-23-2439-2019 784 

Bhatti, A. M., Koike, T., & Shrestha, M. (2016). Climate change impact assessment on 785 

mountain snow hydrology by water and energy budget-based distributed hydrological 786 

model. Journal of Hydrology, 543, 523–541. 787 

https://doi.org/10.1016/j.jhydrol.2016.10.025 788 

Chen, F., Barlage, M., Tewari, M., Rasmussen, R., Jin, J., Lettenmaier, D., Livneh, B., Lin, 789 

C., Miguez-Macho, G., Niu, G.-Y., Wen, L., & Yang, Z.-L. (2014). Modeling 790 

seasonal snowpack evolution in the complex terrain and forested Colorado 791 

Headwaters region: A model intercomparison study. Journal of Geophysical 792 

Research: Atmospheres, 119(24), 13,795-13,819. 793 

https://doi.org/10.1002/2014JD022167 794 

Chen, F., Liu, C., Dudhia, J., & Chen, M. (2014). A sensitivity study of high-resolution 795 

regional climate simulations to three land surface models over the western United 796 

States: SENSITIVITY STUDY OF LSMS IN WRF. Journal of Geophysical 797 

Research: Atmospheres, 119(12), 7271–7291. https://doi.org/10.1002/2014JD021827 798 

Clow, D. W. (2010). Changes in the timing of snowmelt and streamflow in Colorado: A 799 

response to recent warming. Journal of Climate, 23(9), 2293–2306. USGS 800 

Publications Warehouse. https://doi.org/10.1175/2009JCLI2951.1 801 

Clow, D. W., Nanus, L., Verdin, K. L., & Schmidt, J. (2012). Evaluation of SNODAS snow 802 

depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA: 803 



27 

 

EVALUATION OF SNODAS. Hydrological Processes, 26(17), 2583–2591. 804 

https://doi.org/10.1002/hyp.9385 805 

Franz, K. J., Hogue, T. S., & Sorooshian, S. (2008). Operational snow modeling: Addressing 806 

the challenges of an energy balance model for National Weather Service forecasts. 807 

Journal of Hydrology, 360(1–4), 48–66. https://doi.org/10.1016/j.jhydrol.2008.07.013 808 

Garousi-Nejad, I., & Tarboton, D. (2021a). Data for A Comparison of National Water Model 809 

Retrospective Analysis Snow Outputs at SNOTEL Sites Across the Western U.S. 810 

HydroShare. 811 

https://www.hydroshare.org/resource/7a51f56c2cf24ae78012ac6a6d4815a6/ 812 

Garousi-Nejad, I., & Tarboton, D. (2021b). JavaScript code for retrieval of MODIS 813 

Collection 6 NDSI snow cover at SNOTEL sites and a Jupyter Notebook to 814 

merge/reprocess data. HydroShare. 815 

https://www.hydroshare.org/resource/d287f010b2dd48edb0573415a56d47f8/ 816 

Garousi-Nejad, I., & Tarboton, D. (2021c). Notebook for retrieval of precipitation, air 817 

temperature, and snow water equivalent measurements at SNOTEL sites. HydroShare. 818 

https://www.hydroshare.org/resource/d1fe0668734e4892b066f198c4015b06/ 819 

Garousi-Nejad, I., & Tarboton, D. (2021d). Notebook to get the indices of National Water 820 

Model V2.0 grid cells containing SNOTL sites. HydroShare. 821 

https://www.hydroshare.org/resource/7839e3f3b4f54940bd3591b24803cacf/ 822 

Garousi-Nejad, I., & Tarboton, D. (2021e). Notebooks for combining the National Water 823 

Model results/inputs with observations from SNOTEL and MODIS at SNOTEL sites. 824 

HydroShare. 825 

https://www.hydroshare.org/resource/493e0ad05c2d45199427cc41a6c76de0/ 826 

Garousi-Nejad, I., & Tarboton, D. (2021f). Notebooks for post-processing the retrieved 827 

National Water Model V2.0 Retrospective run results and inputs at SNOTEL sites. 828 



28 

 

HydroShare. 829 

https://www.hydroshare.org/resource/1b66a752b0cc467eb0f46bda5fdc4b34/ 830 

Garousi-Nejad, I., & Tarboton, D. (2021g). Notebooks for visualizations reported at A 831 

Comparison of National Water Model Retrospective Analysis Snow Outputs at 832 

SNOTEL Sites Across the Western U.S. HydroShare. 833 

https://www.hydroshare.org/resource/8507aa41130e45bfb0752026cf2253ab/ 834 

Gergel, D. R., Nijssen, B., Abatzoglou, J. T., Lettenmaier, D. P., & Stumbaugh, M. R. (2017). 835 

Effects of climate change on snowpack and fire potential in the western USA. 836 

Climatic Change, 141(2), 287–299. https://doi.org/10.1007/s10584-017-1899-y 837 

Gochis, D., Barlage, M., Cabell, R., Casali, M., Dugger, A., FitzGerald, K., McAllister, M., 838 

McCreight, J., RafieeiNasab, A., Read, L., Sampson, K., Yates, D., & Zhang, Y. 839 

(2020). The WRF-Hydro® modeling system technical description, (Version 5.1.1). 840 

NCAR Technical Note. 841 

https://ral.ucar.edu/sites/default/files/public/WRFHydroV511TechnicalDescription.pd842 

f 843 

Gochis, D., Barlage, M., Cabell, R., Dugger, A., Fanfarillo, A., FitzGerald, K., McAllister, 844 

M., McCreight, J., RafieeiNasab, A., Read, L., Frazier, N., Johnson, D., Mattern, J. 845 

D., Karsten, L., Mills, T. J., & Fersch, B. (2020). WRF-Hydro® v5.1.1 (v5.1.1) 846 

[Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.3625238 847 

Hall, D. K., & Riggs, G. A. (2016). MODIS/Terra Snow Cover Daily L3 Global 500m SIN 848 

Grid [Data set]. NASA National Snow and Ice Data Center DAAC. 849 

https://doi.org/10.5067/MODIS/MOD10A1.006 850 

Harder, P., & Pomeroy, J. W. (2014). Hydrological model uncertainty due to precipitation-851 

phase partitioning methods: HYDROLOGIC MODEL UNCERTAINTY OF 852 



29 

 

PRECIPITATION-PHASE METHODS. Hydrological Processes, 28(14), 4311–4327. 853 

https://doi.org/10.1002/hyp.10214 854 

Hedstrom, N. R., & Pomeroy, J. W. (1998). Measurements and modelling of snow 855 

interception in the boreal forest. Hydrological Processes, 12, 1611–1625. 856 

https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11%3C1611::AID-857 

HYP684%3E3.0.CO;2-4 858 

Helbig, N., van Herwijnen, A., Magnusson, J., & Jonas, T. (2015). Fractional snow-covered 859 

area parameterization over complex topography. Hydrology and Earth System 860 

Sciences, 19(3), 1339–1351. https://doi.org/10.5194/hess-19-1339-2015 861 

Horritt, M. S., & Bates, P. D. (2002). Evaluation of 1D and 2D numerical models for 862 

predicting river flood inundation. Journal of Hydrology, 268(1–4), 87–99. 863 

https://doi.org/10.1016/S0022-1694(02)00121-X 864 

Hou, D., charles, M., Luo, Y., Toth, Z., Zhu, Y., Krzysztofowicz, R., Lin, Y., Xie, P., Seo, 865 

D.-J., Pena, M., & Cui, B. (2014). Climatology-Calibrated Precipitation Analysis at 866 

Fine Scales: Statistical Adjustment of Stage IV toward CPC Gauge-Based Analysis. 867 

Journal of Hydrometeorology, 15(6), 2542–2557. https://doi.org/10.1175/JHM-D-11-868 

0140.1 869 

Jordan, R. E. (1991). A One-dimensional temperature model for a snow cover: Technical 870 

documentation for SNTHERM.89. Cold Regions Research and Engineering 871 

Laboratory (U.S.). http://hdl.handle.net/11681/11677 872 

Lahmers, T. M., Gupta, H., Castro, C. L., Gochis, D. J., Yates, D., Dugger, A., Goodrich, D., 873 

& Hazenberg, P. (2019). Enhancing the Structure of the WRF-Hydro Hydrologic 874 

Model for Semiarid Environments. Journal of Hydrometeorology, 20(4), 691–714. 875 

https://doi.org/10.1175/JHM-D-18-0064.1 876 



30 

 

Li, D., Wrzesien, M. L., Durand, M., Adam, J., & Lettenmaier, D. P. (2017). How much 877 

runoff originates as snow in the western United States, and how will that change in 878 

the future?: Western U.S. Snowmelt-Derived Runoff. Geophysical Research Letters, 879 

44(12), 6163–6172. https://doi.org/10.1002/2017GL073551 880 

Livneh, B., & Badger, A. M. (2020). Drought less predictable under declining future 881 

snowpack. Nature Climate Change, 10(5), 452–458. https://doi.org/10.1038/s41558-882 

020-0754-8 883 

Livneh, B., Xia, Y., Mitchell, K. E., Ek, M. B., & Lettenmaier, D. P. (2010). Noah LSM 884 

Snow Model Diagnostics and Enhancements. Journal of Hydrometeorology, 11(3), 885 

721–738. https://doi.org/10.1175/2009JHM1174.1 886 

Loth, B., Graf, H.-F., & Oberhuber, J. M. (1993). Snow cover model for global climate 887 

simulations. Journal of Geophysical Research, 98(D6), 10451. 888 

https://doi.org/10.1029/93JD00324 889 

Lundquist, J. D., & Flint, A. L. (2006). Onset of Snowmelt and Streamflow in 2004 in the 890 

Western United States: How Shading May Affect Spring Streamflow Timing in a 891 

Warmer World. Journal of Hydrometeorology, 7(6), 1199–1217. 892 

https://doi.org/10.1175/JHM539.1 893 

Lynch-Stieglitz, M. (1994). The Development and Validation of a Simple Snow Model for 894 

the GISS GCM. Journal of Climate, 7(12), 1842–1855. 895 

http://www.jstor.org/stable/26198671 896 

Magand, C., Ducharne, A., Le Moine, N., & Gascoin, S. (2014). Introducing Hysteresis in 897 

Snow Depletion Curves to Improve the Water Budget of a Land Surface Model in an 898 

Alpine Catchment. Journal of Hydrometeorology, 15(2), 631–649. 899 

https://doi.org/10.1175/JHM-D-13-091.1 900 



31 

 

Mahat, V., & Tarboton, D. G. (2014). Representation of canopy snow interception, unloading 901 

and melt in a parsimonious snowmelt model: CANOPY SNOW INTERCEPTION, 902 

UNLOADING AND MELT. Hydrological Processes, 28(26), 6320–6336. 903 

https://doi.org/10.1002/hyp.10116 904 

Masson, T., Dumont, M., Mura, M., Sirguey, P., Gascoin, S., Dedieu, J.-P., & Chanussot, J. 905 

(2018). An Assessment of Existing Methodologies to Retrieve Snow Cover Fraction 906 

from MODIS Data. Remote Sensing, 10(4), 619. https://doi.org/10.3390/rs10040619 907 

McCreight, J. L., Small, E. E., & Larson, K. M. (2014). Snow depth, density, and SWE 908 

estimates derived from GPS reflection data: Validation in the western U. S. Water 909 

Resources Research, 50(8), 6892–6909. https://doi.org/10.1002/2014WR015561 910 

McEnery, J., Ingram, J., Duan, Q., Adams, T., & Anderson, L. (2005). NOAA’S 911 

ADVANCED HYDROLOGIC PREDICTION SERVICE: Building Pathways for 912 

Better Science in Water Forecasting. Bulletin of the American Meteorological Society, 913 

86(3), 375–386. https://doi.org/10.1175/BAMS-86-3-375 914 

Meyer, J. D. D., Jin, J., & Wang, S.-Y. (2012). Systematic Patterns of the Inconsistency 915 

between Snow Water Equivalent and Accumulated Precipitation as Reported by the 916 

Snowpack Telemetry Network. Journal of Hydrometeorology, 13(6), 1970–1976. 917 

https://doi.org/10.1175/JHM-D-12-066.1 918 

Mote, P. W. (2003). Trends in snow water equivalent in the Pacific Northwest and their 919 

climatic causes: TRENDS IN SNOW WATER EQUIVALENT. Geophysical 920 

Research Letters, 30(12). https://doi.org/10.1029/2003GL017258 921 

Mote, P. W., Hamlet, A. F., Clark, M. P., & Lettenmaier, D. P. (2005). DECLINING 922 

MOUNTAIN SNOWPACK IN WESTERN NORTH AMERICA*. Bulletin of the 923 

American Meteorological Society, 86(1), 39–50. https://doi.org/10.1175/BAMS-86-1-924 

39 925 



32 

 

Naple, P., Letcher, T., Minder, J. R., Gochis, D., Dugger, A., & RafieeiNasab, A. (2020). 926 

Improving parameterizations of snow in the National Water Model with observations 927 

from the New York State Mesonet to better simulate snow and streamflow in the 928 

northeastern United States. AGU Fall Meeting, Virtual. 929 

https://ui.adsabs.harvard.edu/abs/2020AGUFMC063.0006N/abstract 930 

National Research Council. (2006). Toward a New Advanced Hydrologic Prediction Service 931 

(AHPS) (p. 11598). National Academies Press. https://doi.org/10.17226/11598 932 

National Weather Service. (2019). National-Water-Model-V2. Google Cloud Bucket. 933 

https://console.cloud.google.com/storage/browser/national-water-model-v2 934 

Niu, G.-Y., & Yang, Z.-L. (2004). Effects of vegetation canopy processes on snow surface 935 

energy and mass balances: CANOPY EFFECTS ON SNOW PROCESSES. Journal 936 

of Geophysical Research: Atmospheres, 109(D23). 937 

https://doi.org/10.1029/2004JD004884 938 

Niu, G.-Y., & Yang, Z.-L. (2007). An observation-based formulation of snow cover fraction 939 

and its evaluation over large North American river basins. Journal of Geophysical 940 

Research, 112(D21), D21101. https://doi.org/10.1029/2007JD008674 941 

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., 942 

Manning, K., Niyogi, D., Rosero, E., Tewari, M., & Xia, Y. (2011). The community 943 

Noah land surface model with multiparameterization options (Noah-MP): 1. Model 944 

description and evaluation with local-scale measurements. Journal of Geophysical 945 

Research, 116(D12), D12109. https://doi.org/10.1029/2010JD015139 946 

Omernik, J. M., & Griffith, G. E. (2014). Ecoregions of the Conterminous United States: 947 

Evolution of a Hierarchical Spatial Framework. Environmental Management, 54(6), 948 

1249–1266. https://doi.org/10.1007/s00267-014-0364-1 949 



33 

 

Pan, M., Sheffield, J., Wood, E. F., Mitchell, K. E., Houser, P. R., Schaake, J. C., Robock, A., 950 

Lohmann, D., Cosgrove, B., Duan, Q., Luo, L., Higgins, R. W., Pinker, R. T., & 951 

Tarpley, J. D. (2003). Snow process modeling in the North American Land Data 952 

Assimilation System (NLDAS): 2. Evaluation of model simulated snow water 953 

equivalent. Journal of Geophysical Research: Atmospheres, 108(D22), 954 

2003JD003994. https://doi.org/10.1029/2003JD003994 955 

RafieeiNasab, A., Karsten, L., Dugger, A., FitzGerald, K., Cabell, R., Gochis, D., Yates, D., 956 

Sampson, K., McCreight, J., Read, L., Zhang, Y., & McAllister, M. (2020). Overview 957 

of National Water Model calibration general strategy & optimization, NCAR 958 

Community WRF-Hydro Modeling System training workshop. NCAR Community 959 

WRF-Hydro Modeling System training workshop. 960 

https://ral.ucar.edu/projects/wrf_hydro/training-materials 961 

Regonda, S. K., Rajagopalan, B., Clark, M., & Pitlick, J. (2005). Seasonal Cycle Shifts in 962 

Hydroclimatology over the Western United States. Journal of Climate, 18(2), 372–963 

384. https://doi.org/10.1175/JCLI-3272.1 964 

Riggs, G. A., Hall, D. K., & Román, M. O. (2016). MODIS Snow Products Collection 6 User 965 

Guide. http://modis-snow-966 

ice.gsfc.nasa.gov/uploads/C6_MODIS_Snow_User_Guide.pdf 967 

Riggs, G. A., Hall, D. K., & Román, M. O. (2017). Overview of NASA’s MODIS and 968 

Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data 969 

Records. Earth System Science Data, 9(2), 765–777. https://doi.org/10.5194/essd-9-970 

765-2017 971 

Salomonson, V. V., & Appel, I. (2006). Development of the Aqua MODIS NDSI fractional 972 

snow cover algorithm and validation results. IEEE Transactions on Geoscience and 973 

Remote Sensing, 44(7), 1747–1756. https://doi.org/10.1109/TGRS.2006.876029 974 



34 

 

Sangwan, N., & Merwade, V. (2015). A Faster and Economical Approach to Floodplain 975 

Mapping Using Soil Information. JAWRA Journal of the American Water Resources 976 

Association, 51(5), 1286–1304. https://doi.org/10.1111/1752-1688.12306 977 

Shamir, E., Carpenter, T. M., Fickenscher, P., & Georgakakos, K. P. (2006). Evaluation of 978 

the National Weather Service Operational Hydrologic Model and Forecasts for the 979 

American River Basin. Journal of Hydrologic Engineering, 11(5), 392–407. 980 

https://doi.org/10.1061/(ASCE)1084-0699(2006)11:5(392) 981 

Steele, C., Dialesandro, J., James, D., Elias, E., Rango, A., & Bleiweiss, M. (2017). 982 

Evaluating MODIS snow products for modelling snowmelt runoff: Case study of the 983 

Rio Grande headwaters. International Journal of Applied Earth Observation and 984 

Geoinformation, 63, 234–243. https://doi.org/10.1016/j.jag.2017.08.007 985 

Stewart, I. T., Cayan, D. R., & Dettinger, M. D. (2004). Changes in Snowmelt Runoff Timing 986 

in Western North America under a `Business as Usual’ Climate Change Scenario. 987 

Climatic Change, 62(1–3), 217–232. 988 

https://doi.org/10.1023/B:CLIM.0000013702.22656.e8 989 

Stewart, I. T., Cayan, D. R., & Dettinger, M. D. (2005). Changes toward Earlier Streamflow 990 

Timing across Western North America. Journal of Climate, 18(8), 1136–1155. 991 

https://doi.org/10.1175/JCLI3321.1 992 

Sun, N., Yan, H., Wigmosta, M. S., Leung, L. R., Skaggs, R., & Hou, Z. (2019). Regional 993 

Snow Parameters Estimation for Large‐Domain Hydrological Applications in the 994 

Western United States. Journal of Geophysical Research: Atmospheres, 124(10), 995 

5296–5313. https://doi.org/10.1029/2018JD030140 996 

Swenson, S. C., & Lawrence, D. M. (2012). A new fractional snow-covered area 997 

parameterization for the Community Land Model and its effect on the surface energy 998 



35 

 

balance: CLM SNOW COVER FRACTION. Journal of Geophysical Research: 999 

Atmospheres, 117(D21), n/a-n/a. https://doi.org/10.1029/2012JD018178 1000 

Tarboton, D., & Garousi-Nejad, I. (2021). Notebook for retrieval of National Water Model 1001 

V2.0 Retrospective run results at SNOTEL sites. HydroShare. 1002 

https://www.hydroshare.org/resource/3d4976bf6eb84dfbbe11446ab0e31a0a/ 1003 

Toure, A. M., Rodell, M., Yang, Z.-L., Beaudoing, H., Kim, E., Zhang, Y., & Kwon, Y. 1004 

(2016). Evaluation of the Snow Simulations from the Community Land Model, 1005 

Version 4 (CLM4). Journal of Hydrometeorology, 17(1), 153–170. 1006 

https://doi.org/10.1175/JHM-D-14-0165.1 1007 

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., 1008 

Lathrop, S., Lifka, D., Peterson, G. D., Roskies, R., Scott, J. R., & Wilkins-Diehr, N. 1009 

(2014). XSEDE: Accelerating Scientific Discovery. Computing in Science & 1010 

Engineering, 16(5), 62–74. https://doi.org/10.1109/MCSE.2014.80 1011 

Trujillo, E., & Molotch, N. P. (2014). Snowpack regimes of the Western United States. Water 1012 

Resources Research, 50(7), 5611–5623. https://doi.org/10.1002/2013WR014753 1013 

U.S. Department of Agriculture. (2011). Snow Survey and Water Supply Forecasting. 1014 

National Engineering Handbook Part 622. Water and Climate Center, Natural 1015 

Resources Conservation Service. 1016 

directives.sc.egov.usda.gov/viewerFS.aspx?hid=32040 1017 

Viterbo, F., Mahoney, K., Read, L., Salas, F., Bates, B., Elliott, J., Cosgrove, B., Dugger, A., 1018 

Gochis, D., & Cifelli, R. (2020). A Multiscale, Hydrometeorological Forecast 1019 

Evaluation of National Water Model Forecasts of the May 2018 Ellicott City, 1020 

Maryland, Flood. Journal of Hydrometeorology, 21(3), 475–499. 1021 

https://doi.org/10.1175/JHM-D-19-0125.1 1022 



36 

 

Wang, X., Zhu, Y., Chen, Y., Zheng, H., Liu, H., Huang, H., Liu, K., & Liu, L. (2017). 1023 

Influences of forest on MODIS snow cover mapping and snow variations in the Amur 1024 

River basin in Northeast Asia during 2000-2014. Hydrological Processes, 31(18), 1025 

3225–3241. https://doi.org/10.1002/hyp.11249 1026 

Wang, Y., Broxton, P., Fang, Y., Behrangi, A., Barlage, M., Zeng, X., & Niu, G. (2019). A 1027 

Wet‐Bulb Temperature‐Based Rain‐Snow Partitioning Scheme Improves Snowpack 1028 

Prediction Over the Drier Western United States. Geophysical Research Letters, 1029 

46(23), 13825–13835. https://doi.org/10.1029/2019GL085722 1030 

Wrzesien, M. L., Pavelsky, T. M., Kapnick, S. B., Durand, M. T., & Painter, T. H. (2015). 1031 

Evaluation of snow cover fraction for regional climate simulations in the Sierra 1032 

Nevada: EVALUATION OF SNOW COVER FOR REGIONAL SIMULATIONS IN 1033 

THE SIERRA NEVADA. International Journal of Climatology, 35(9), 2472–2484. 1034 

https://doi.org/10.1002/joc.4136 1035 

Yang, Z.-L., & Dickinson, R. E. (1996). Description of the Biosphere-Atmosphere Transfer 1036 

Scheme (BATS) for the Soil Moisture Workshop and evaluation of its performance. 1037 

Global and Planetary Change, 13(1–4), 117–134. https://doi.org/10.1016/0921-1038 

8181(95)00041-0 1039 

Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longuevergne, L., 1040 

Manning, K., Niyogi, D., Tewari, M., & Xia, Y. (2011). The community Noah land 1041 

surface model with multiparameterization options (Noah-MP): 2. Evaluation over 1042 

global river basins. Journal of Geophysical Research, 116(D12), D12110. 1043 

https://doi.org/10.1029/2010JD015140 1044 

You, J., Tarboton, D. G., & Luce, C. H. (2014). Modeling the snow surface temperature with 1045 

a one-layer energy balance snowmelt model. Hydrology and Earth System Sciences, 1046 

18(12), 5061–5076. https://doi.org/10.5194/hess-18-5061-2014 1047 



37 

 

Zalenski, G., Krajewski, W. F., Quintero, F., Restrepo, P., & Buan, S. (2017). Analysis of 1048 

National Weather Service Stage Forecast Errors. Weather and Forecasting, 32(4), 1049 

1441–1465. https://doi.org/10.1175/WAF-D-16-0219.1 1050 

Zhang, J., Condon, L. E., Tran, H., & Maxwell, R. M. (2021). A national topographic dataset 1051 

for hydrological modeling over the contiguous United States. Earth System Science 1052 

Data, 13(7), 3263–3279. https://doi.org/10.5194/essd-13-3263-2021 1053 

 1054 

  1055 



38 

 

TABLE  1056 

Table 1. The Noah-MP land surface model options as defined in the National Water Model 1057 

version 2.0 retrospective analysis configuration † 1058 

Code Name Long Name Physics Option Used 

DYNAMIC_VEG_OPTION Dynamic vegetation 4: Using monthly LAI is 

prescribed for various 

vegetation types  

CANOPY_STOMATAL_RESISTANCE_OPTION Canopy stomatal 

resistance 

1: Ball-Berry 

BTR_OPTION Soil moisture factor 

for stomatal resistance 

1: Noah type using soil 

moisture 

RUNOFF_OPTION Runoff and 

groundwater 

3: Noah type surface and 

subsurface runoff (free 

drainage) 

SURFACE_DRAG_OPTION Surface layer drag 

coefficients  

1: Monin-Obukhov 

FROZEN_SOIL_OPTION Frozen soil 

permeability 

1: Using the total soil 

moisture to compute 

hydraulic properties  

SUPERCOOLED_WATER_OPTION Supercooled liquid 

water (or ice fraction) 

1: No iteration (Form of 

the freezing-point 

depression equation) 

RADIATIVE_TRANSFER_OPTION Radiation transfer 3: Two-stream applied to 

vegetated fraction  

SNOW_ALBEDO_OPTION Ground snow surface 

albedo 

2: BATS 

PCP_PARTITION_OPTION Partitioning 

precipitation into 

rainfall & snowfall 

1: Jordan (1991) 

†Based on Gochis, Barlage, Cabell, Casali, et al. (2020) and Gochis, Barlage, Cabell, Dugger, 1059 

et. (2020).  1060 
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Table 1. (continued). 1061 

Code Name Long Name Physics Option 

Used 

TBOT_OPTION Lower boundary 

condition of soil 

temperature 

2: TBOT at ZBOT 

(8m) read from a file 

TEMP_TIME_SCHEME_OPTION Snow/soil temperature 

time scheme (only layer 

1) 

3: Semi-implicit; flux 

top boundary 

condition, but FSNO 

for TS calculation 

GLACIER_OPTION Glacier treatment 2: Ice treatment more 

like original Noah 

SURFACE_RESISTANCE_OPTION Surface resistant to 

evaporation and 

sublimation 

4: For non-snow; 

rsurf = rsurf_snow 

for snow (set in 

MPTABLE) 

†Based on Gochis, Barlage, Cabell, Casali, et al. (2020) and Gochis, Barlage, Cabell, Dugger, 1062 

et. (2020).  1063 



40 

 

Table 2. Summary of average correctness (𝐶̅) and average fit (�̅�) metrics evaluated for the 1064 

binary comparison of snow presence or absence when considering (a) all SNOTEL 1065 

sites and (b) sites reported as open approaches. 1066 

Average 

metrics 

(a) All 734 SNOTEL sites (b) The 62 SNOTEL sites 

reported as open 

Snow Presence Condition Snow Presence Condition 

Full‡ Some§ Full‡ Some§ 

�̅� 9.41 1.47 6.18 1.20 

�̅� 0.11 0.50 0.16 0.64 

‡Daily modeled snow-covered area fraction (SCAF) taken as full snow if SCAF is ≥ 0.95. 1067 

Daily MODIS SCAF taken as full snow if NDSI is ≥ 0.7. 1068 

§Daily modeled SCAF taken as some snow if SCAF is ≥ 0.3. Daily MODIS SCAF taken as 1069 

some snow if NDSI is ≥ 0.3. 1070 
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FIGURE  1072 

 1073 

Figure 1. Snow water equivalent from the NWM version 2.0 reanalysis (NWM-R2) dataset 1074 

compared to in-situ observations at two SNOTEL sites in Utah. (a) Hole-in-Rock site 1075 

(ID: 528) located at 2794 m elevation for the water year 2008. (b) Tony Grove Lake 1076 

site (ID: 823) located at 2582 m elevation for the water year 2018. 1077 

 1078 
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 1080 

Figure 2. (a) SNOTEL sites (734 black dots) across the Western United States. (b) Illustrative 1081 

relationship of Tony Grove Lake, Utah SNOTEL site (ID: 823), within NWM grid 1082 

cells with a spatial resolution of 1 km and MODIS grid cells with a spatial resolution 1083 

of 463 m (nominally 500 m). (c) NWM grid cell elevation vs. elevation reported for 1084 

SNOTEL sites (observed). Note that there are four MODIS grid cells that have their 1085 

centroid within each single NWM grid cell.  1086 
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 1089 

Figure 3. First day of month modeled (NWM-R2) vs. observed (SNOTEL) SWE. Each point 1090 

is a site and date in the period of overlap between NWM-R2 and SNOTEL data. 1091 
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 1094 

Figure 4. First day of month modeled (NWM-R2) vs. observed (MODIS-C6) SCAF for 1095 

NWM grid cells and MODIS grid cells containing SNOTEL sites. Each point is a site 1096 

and a date within the period of overlap between NWM and MODIS data. Axis 1097 

histograms depict the SCAF distributions. 1098 
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 1100 

Figure 5. Comparison of NWM-R2 and MODIS-C6 SCAF maps over the study region on 1101 

Dec 1, 2011. (a) MODIS-C6 SCAF estimated from NDSI_Snow_Cover values of five 1102 

tiles (in grey). (b) NWM-R2 SCAF outputs at 00:00 UTC masked for the MODIS-C6 1103 

tiles. (c) The zoomed-in map of MODIC-C6 SCAF for the blue box in (a). (d) The 1104 

zoomed-in map of NWM-R2 SCAF for the blue box in (b). 1105 
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 1107 

Figure 6. Comparison between NWM-R2 monthly precipitation input (labeled as modeled) 1108 

and SNOTEL monthly precipitation (labeled as observed). Each point is a site and 1109 

month in the period of overlap between NWM-R2 and SNOTEL data. 1110 
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 1112 

Figure 7. Comparison between NWM-R2 monthly average of hourly air temperature input 1113 

(labeled as modeled) and SNOTEL monthly average of mean daily air temperature 1114 

(labeled as observed). Each point is a site and month in the period of overlap between 1115 

NWM-R2 and SNOTEL data. 1116 
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 1118 

Figure 8. Modeled and observed (a) SWE and (b) SCAF averaged across all SNOTEL sites 1119 

and years for each specific day of the (water) year. 1120 
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 1122 

Figure 9. Modeled and observed SWE averaged across all SNOTEL sites and years for each 1123 

specific day of the (water) year grouped by ecoregion. The map shows 15 Omernik 1124 

ecoregions where colours represent the bias. 1125 
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 1127 

Figure 10. Modeled and observed SCAF averaged across all SNOTEL sites and years for 1128 

each specific day of the (water) year grouped by ecoregion. The map shows 15 1129 

Omernik ecoregions where colours represent the bias. 1130 
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 1132 

Figure 11. Comparisons on date of observed peak SWE. (a) NWM-R2 vs. SNOTEL SWE, 1133 

(b) NWM-R2 vs. MODIS-C6 SCAF, and (c) NWM-R2 vs. SNOTEL precipitation 1134 

accumulated from Oct 1 to observed peak SWE date. Each point is a site and a water 1135 

year (that starts Oct 1) in the period of overlap between NWM-R2 and SNOTEL data.  1136 
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 1138 

Figure 12. Different date comparison on dates of observed and modeled peak SWE (a) 1139 

NWM-R2 vs. SNOTEL peak SWE, (b) NWM-R2 vs. MODIS-C6 SCAF, and (c) 1140 

NWM-R2 vs. SNOTEL precipitation accumulated from Oct 1 to observed and 1141 

modeled peak SWE dates. Each point is a site and a water year (that starts Oct 1) in 1142 

the period of overlap between NWM-R2 and SNOTEL data.  1143 
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 1145 

Figure 13. (a) NWM-R2 vs. SNOTEL precipitation accumulated from Oct 1 to observed and 1146 

modeled peak SWE dates. This figure is similar to Figure 10 (a) but with colours 1147 

separating points into two groups. The first group (dark blue) contains points where 1148 

Nash Sutcliffe Efficiency (NSE) values for daily modeled vs. observed precipitation 1149 

are equal to or greater than 0.9. The second group (light blue) includes points where 1150 

NSE values for daily modeled vs. observed precipitation are less than 0.9. Statistics 1151 

are reported separately for the NSE >= 0.9 and NSE < 0.9 subsets. (b) NWM-R2 peak 1152 

SWE vs. SNOTEL peak SWE for points from (a) that have daily precipitation NSE 1153 

equal to or greater than 0.9 (dark blue class). 1154 
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 1156 

Figure 14. Direct (binary) comparison of snow presence considering all 734 SNOTEL sites 1157 

with (a) full snow cover and (b) some snow cover. The modeled and observed 1158 

thresholds for full snow cover were NWM-R2 SCAF≥ 0.95 and MODIS NDSI≥0.7, 1159 

respectively. Lower thresholds were used for some snow cover (i.e., NWM-R2 1160 

SCAF>0.3 and MODIS NDSI>0.3). (c) Locations of the 62 SNOTEL sites reported as 1161 

open. Average fit metrics (i.e., 𝐶̅ and �̅�), presented here, quantitatively evaluate the 1162 

degree-of-overlap between the modeled and observed snow presence.  1163 
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 1165 

Figure 15. Analysis of melt timing. (a) Classification of differences between observed and 1166 

modeled dates of half melt from peak SWE. Close: modeled and observed within 5 1167 

days of each other; Behind: modeled 6 to 19 days after observed; Ahead: modeled 6 1168 

to 19 days before observed; Far apart: Modeled and observed more than 20 days 1169 

apart. (b) NWM-R2 SWE vs. SNOTEL SWE date of half melt from peak. 1170 


