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Abstract 

This study compares the U.S. National Water Model (NWM) reanalysis snow outputs to 

observed snow water equivalent (SWE) and snow-covered area fraction (SCAF) at SNOTEL 

sites across the Western U.S. This was done to evaluate and identify opportunities for 

improving the modeling of snow in the NWM. SWE was obtained from SNOTEL sites, while

SCAF was obtained from MODIS observations at a nominal 500 m grid scale. Retrospective 

NWM results were at a 1000 m grid scale. We compared results for SNOTEL sites to gridded

NWM and MODIS outputs for the grid cells encompassing each SNOTEL site. Differences 

between modeled and observed SWE were attributed to both model errors, as well as errors in

inputs, notably precipitation and temperature. The NWM generally under-predicted SWE, 

partly due to precipitation input differences. There was also a slight general bias for model 

input temperature to be cooler than observed, counter to the direction expected to lead to 

under-modeling of SWE. There was also under-modeling of SWE for a subset of sites where 

precipitation inputs were good. Furthermore, the NWM generally tends to melt snow early. 

There was considerable variability between modeled and observed SCAF that hampered 

useful interpretation of these comparisons. This is in part due to the model grid SCAF 

essentially being binary (snow or no snow) while observations from MODIS are much more 

fractional. However, when SCAF was aggregated across all sites and years, modeled SCAF 

tended to be more than observed using MODIS. These differences are regional with generally

better SWE and SCAF results in the Central Basin and Range and differences tending to 

become larger the further away regions are from this region. These findings identify areas 

where predictions from the NWM involving snow may be better or worse, and suggest 

opportunities for research directed towards model improvements.

1. INTRODUCTION

Accurate water supply forecasts will become increasingly crucial as western 

populations grow and demand more water, and as operational agencies have to manage water 

under global environmental change (Bhatti, Koike, & Shrestha, 2016; Gergel, Nijssen, 

Abatzoglou, Lettenmaier, & Stumbaugh, 2017; Li, Wrzesien, Durand, Adam, & Lettenmaier, 

2017; Livneh & Badger, 2020; Mote, 2003; Mote, Hamlet, Clark, & Lettenmaier, 2005; 

Regonda, Rajagopalan, Clark, & Pitlick, 2005; Stewart, Cayan, & Dettinger, 2004, 2005). 

Many scientific challenges in understanding and preparing for global environmental change 

rest upon our ability to predict streamflow and snowmelt quantity, timing, and spatial patterns

that are important for decision making in water-sensitive sectors. In the United States, the 
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National Weather Service (NWS) of the National Oceanic and Atmospheric Administration 

(NOAA) is responsible for short- and long-term streamflow predictions across the U.S. Prior 

to 2016, NWS operational forecasts were limited to forecasts from NWS River Forecast 

Centers (RFC) at about 4000 forecast points. These were produced predominantly using the 

Sacramento soil moisture accounting model (SAC-SMA) to simulate runoff production and 

SNOW-17 model to simulate snowpack and snowmelt, within the Advanced Hydrologic 

Prediction System (https://water.weather.gov/ahps/rfc/rfc.php) modeling infrastructure

(McEnery, Ingram, Duan, Adams, & Anderson, 2005). 

While Franz, Hogue, and Sorooshian (2008) showed that SNOW-17 performed well 

over the Reynolds Creek Experimental Watershed located in southwestern Idaho, other 

studies found limitations such as being unable to capture snowmelt timing precisely due to its

simple conceptual framework, its inability to represent spatial variability of land properties, 

and its dependence on extensive calibration for each basin using historical data (Lundquist & 

Flint, 2006; Shamir, Carpenter, Fickenscher, & Georgakakos, 2006; Zalenski, Krajewski, 

Quintero, Restrepo, & Buan, 2017). Furthermore, a National Research Council committee 

identified a gap between what is now considered state-of-the-art modeling capabilities and 

those used in AHPS (National Research Council, 2006). It concluded that the NWS needs to 

incorporate more advanced hydrologic science into their hydrologic models.

The increasing availability of distributed geographic data and computer power has 

made it possible to develop national/continental scale, physically-based, and distributed 

models. In 2016, NOAA’s Office of Water Prediction implemented the National Water 

Model (NWM) as a physically-based distributed model based on the Weather Research and 

Forecasting Model Hydrological modeling system (WRF-Hydro) framework (Gochis et al., 

2020) to provide nationally consistent operational hydrologic forecasting capability. The 

main goals of the NWM were to provide forecast streamflow, produce spatially continuous 

national estimates of hydrologic states (soil moisture, snowpack, etc.), and to implement a 

modeling architecture that permits rapid infusion of new data and science. 

The NWM provides hourly flow forecasts at about 2.7 million locations in the U.S. In 

addition to the increased number of forecast locations, another advantage of the NWM is that 

it utilizes the physically-based Noah-MultiParameterization (Noah-MP) land surface model 

to represent the land-atmosphere interactions including snow processes. There have been 

several studies evaluating results from the NWM. For instance, Viterbo et al. (2020) 

evaluated the prediction of flooding in NWM streamflow forecasts. They found that errors 

were due to both meteorological input errors as well as hydrologic process representation. In 
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another study, Lahmers et al. (2019) improved the performance of WRF-Hydro configured as

NWM version 1.1 by implementing a conceptual channel infiltration function into the model 

architecture. They concluded that accounting for channel infiltration loss in the semi-arid 

Western U.S. improves the streamflow behaviour simulated when the model is forced with 

high-resolution precipitation input. However, we are not aware of a systematic and thorough 

evaluation of the NWM snow outputs.

In 2019, the NWM retrospective analysis data used to evaluate version 2.0 prior to 

operational deployment, were published (https://registry.opendata.aws/nwm-archive/). This 

retrospective analysis contains output from a 26-year simulation (January 1993 through 

December 2018), where the model was driven by meteorological inputs produced from 

observed (for rainfall) and reanalysis (for other required meteorological inputs) datasets, and 

is referred to as NWM-R2. In terms of snow, outputs include gridded snow water equivalent 

(SWE), the amount of water stored in a snowpack, and the snow-covered area fraction 

(SCAF). Across the Western U.S., snow is observed at 808 snow telemetry (SNOTEL) sites 

that provide data intended to quantify snow and inform water supply forecasts. Illustrative 

comparisons of NWM-R2 SWE to SNOTEL SWE (Figure 1) indicate that SWE is well 

modeled at some locations (Figure 1a) while significantly different from observations at other

locations (Figure 1b). Accurate modeling of SWE is a necessary condition for accurate 

physically-based modeling of runoff. This motivated the need, addressed in this study, to 

systematically evaluate the performance of NWM-R2 simulations of SWE and SCAF against 

available SNOTEL measurements and the moderate resolution imaging spectroradiometer 

(MODIS) satellite imagery to answer the following questions:

 How well does the NWM model simulate snowpack (in terms of SWE, SCAF, and 

snowmelt timing) compare to observations over the entire Western U.S.?

 What are the potential causes responsible for discrepancies in NWM-R2 SWE, SCAF,

and snowmelt timing?

 Are these discrepancies associated with the model input errors or the snow 

parameterization in the model?

Answers to these questions are needed to further improve the NWM snow 

components, and ultimately runoff and water supply forecasts in snowmelt-dominated 

regions. While U.S. based, the NWM is built using the WRF-Hydro modeling framework that

has been applied worldwide, and the lessons learned from this comparison across the U.S. 
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have application to the representation of snow processes in national and continental scale 

models throughout the world. 

The following section, Model, Data and Experimental Design, first presents a 

summary of the NWM-R2 snow parameterization. Then, it described the datasets used in this 

study, comprised of the NWM-R2 reanalysis products, SNOTEL snow observations, and 

MODIS imagery giving the snow-covered area fraction. Next, it presents the metrics that 

were used for evaluating the model results versus observations. The results section compares 

the amount of NWM-R2 SWE, precipitation, air temperature, and SCAF with observations 

from SNOTEL and MODIS. It also compares modeled and observed snowmelt timing.  Then 

there is discussion, followed by conclusions.  The key conclusions are, that as currently 

parameterized, the NWM under simulates snow accumulation and models melt too soon.  

Part of the under simulation is due to biases in precipitation inputs, but even where 

precipitation inputs are good, there is still some under simulation, suggesting that model 

structure and overall energy balance process representations need to be improved.

2. MODEL, DATA, and EXPERIMENTAL DESIGN 

The study region comprises the SNOTEL sites across the Western U.S. (Figure 2a). 

The model is the NWM version 2.0 reanalysis (NWM-R2), that includes Noah-MP land 

surface components for snow. Data include: (1) NWM-R2 inputs (precipitation, air 

temperature, and elevation) and outputs (SWE and SCAF) from the land surface module, (2) 

In-situ measurements of precipitation and air temperature, elevation, and SWE from 

SNOTEL, and (3) remotely sensed snow-covered areas captured by the MODIS sensor for 

water years 2008-2018. These three datasets have different spatial resolutions (Figure 2b). 

The difference in scale is a potential source of uncertainty in our comparative analysis, and 

needs to be recognized in interpretation. There are small differences in elevation between 

SNOTEL (point elevations) and NWM-R2 (1 km grid elevations), that may impact 

temperature comparisons due to lapse rate effects, but there does not appear to be any 

significant bias (Figure 2c). 

[Insert Figure 2]

2.1 NWM-R2 Snow Parameterization and Snow Reanalysis Products

The NWM uses Noah-MP as the land surface model to simulate snow processes 

through a 1-dimensional vertical column over 1 km spatial resolution grid cells. There are 

four main features of Noah-MP that are used in snow processes simulation. We describe 

these features briefly here. 
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2.1.1 Snowfall

The separation of precipitation into rainfall or snowfall is one of the most sensitive 

parameterizations in simulating cold region hydrological processes ‐ (Loth, Graf, & 

Oberhuber, 1993). It is common for precipitation partitioning to be based on near surface air 

temperature. Noah-MP uses Jordan’s (1991) algorithm with double thresholds to partition 

precipitation into rainfall and snowfall. This approach ignores some physical processes 

controlling precipitation phase by not incorporating humidity. This has been reported to lead 

to biases in SWE, snow depth, and snow cover fraction (Chen, Liu, Dudhia, & Chen, 2014; 

Harder & Pomeroy, 2014; Wang et al., 2019). 

2.1.2 Vegetation and Snow Interception

A single-layer vegetation canopy model characterizes the fraction covered by 

vegetation (FVEG) in each model grid. Since the Noah-MP dynamic vegetation option is set 

off in NWM-R2, the model uses the maximum vegetation fraction from the Leaf area index 

(LAI) table as FVEG. If a model grid has a FVEG>0 and a snow depth greater than 0.025 m 

(from initial conditions or the last time step), the model computes the fraction of canopy 

buried by snow based on the snow depth and the canopy height. Then, it uses that fraction to 

adjust the LAI and stem area index (SAI) after burying by snow, which are used in the 

canopy interception (for both liquid water and ice mass) calculation. The vegetation canopy 

model also includes melt and refreeze processes.

2.1.3 Energy Balance and Snow Albedo

Shortwave radiation is modeled over the entire grid cell using a modified two-stream 

approximation treating the vegetation as evenly distributed with gaps. The result is canopy-

absorbed and ground-absorbed solar radiation over the grid cell. Longwave radiation, latent 

heat, sensible heat, and ground heat fluxes are modeled, using a tile approach that treats 

vegetated and bare fractions of the cell separately. These fluxes are then aggregated based on 

the vegetated fraction (FVEG) parameter. Noah-MP treats turbulence fluxes between the 

snowpack, vegetation canopy, and air using Monin-Obukhov similarity theory to model 

atmospheric stability conditions. Stability corrections of under canopy turbulent transfer 

account for the strong stable condition of a warmer canopy overlying the snow surface during

the melt season (Chen et al., 2014). Snow surface albedo is modeled using the Biosphere-

Atmosphere Transfer Scheme (BATS) that has separate direct and diffusive radiation in 

visible and near-infrared bands accounting for fresh snow albedo, snow age, grain size 

growth, impurity, and especially solar zenith angle.

2.1.4 Snowpack Treatment
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The Noah-MP snow module uses up to three snow layers, depending on depth, to 

simulate liquid water retention, refreezing, and snowpack densification including a thin 

surface layer to quantify snow surface temperature. Noah-MP calculates SCAF based on 

snow density, SWE, snow depth, density of fresh snow, and an area-depth snowmelt factor 

that determines the curve relating SCAF and snow depth in the melting season. In NWM-R2 

simulations, snowmelt factor is a calibration parameter that was adjusted to match streamflow

over calibration watersheds (RafieeiNasab et al., 2020). The functional relationship between 

SCAF and depth quantifies small-scale variability of snow within a computational grid 

element which plays an important role in the process governing snow accumulation and 

ablation. There are limitations with the current SCAF representation in Noah-MP as it lacks 

the distinct representation of some factors affecting SCAF such as vegetation (type and 

dynamic) and topography. These limitations affect the accurate simulation of SCAF and 

SWE (Helbig, Herwijnen, Magnusson, & Jonas, 2015; Magand, Ducharne, Le Moine, & 

Gascoin, 2014; Swenson & Lawrence, 2012; Wrzesien, Pavelsky, Kapnick, Durand, & 

Painter, 2015).

This study used the NWM-R2’s land surface model outputs, which are geospatial 

gridded results with a spatial resolution of 1 km and temporal resolution of 3-hours. We 

obtained the NWM-R2 SWE (model code name: SNEQV) and SCAF (model code name: 

FSNO) from the NOAA Google Cloud archive using a Jupyter Notebook (Tarboton & 

Garousi-Nejad, 2020) that we developed. Then, we averaged 3-hourly results to daily values 

to have a similar temporal resolution when comparing the NWM-R2 results with SNOTEL 

and MODIS observations (because both these datasets produce daily data). We also obtained 

the precipitation, air temperature, and elevation input data used for NWM-R2 simulations. 

The WRF-Hydro team at NCAR prepared precipitation and air temperature values for us as 

those data were not available on the Google Cloud archive.

2.2 SNOTEL

SNOTEL stations, managed by the Natural Resources Conservation Service (NRCS), 

generally consist of a snow pillow, an air temperature sensor, and a storage precipitation 

gage. Our study used the daily precipitation, air temperature, SWE, and snow depth values 

measured at SNOTEL sites as a reference dataset to evaluate the NWM-R2 precipitation, air 

temperature, SWE and snow depth. We realize that SNOTEL data must be used with some 

caution because the sites are mostly located in small clearings within forests protected by 

forest canopies, leading to differences in exposure to wind and radiation (McCreight, Small, 

& Larson, 2014). Furthermore, SNOTEL data do not undergo a high correction level
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(Swenson & Lawrence, 2012). In some instances, we found unrealistically high temperature 

values that needed to be filtered out. Nevertheless, SNOTEL data remain the only widespread

in situ SWE observations available for model validation (Barlage et al., 2010; Clow, Nanus, 

Verdin, & Schmidt, 2012; Livneh, Xia, Mitchell, Ek, & Lettenmaier, 2010; Pan et al., 2003; 

Toure et al., 2016). We automated retrieval of the SNOTEL data by calling its Consortium of 

Universities for the Advancement of Hydrologic Science, Inc (CUAHSI) web service from a 

Jupyter Notebook script (Garousi-Nejad & Tarboton, 2021a). 

2.3 MODIS

NASA’s MODIS instrument launched aboard the Terra satellite in late 1999 is 

designed to observe and monitor Earth changes, such as snow cover. MODIS has spectral 

bands in the visible and near-infrared regions, nominal 500 m spatial resolution, and near-

daily global coverage. The daily snow-cover gridded tile product, MOD10A1, has been used 

and improved over time in multiple snow studies (Aalstad, Westermann, & Bertino, 2020; 

Bennett, Cherry, Balk, & Lindsey, 2019; Magand et al., 2014; Masson et al., 2018; 

Salomonson & Appel, 2006; Swenson & Lawrence, 2012). We used products from the 

current version of the MODIS snow-cover algorithm which is the collection 6 suite of 

MODIS (hereafter referred to as MODIS-C6, or just MODIS). We chose to use MODIS-C6

(Hall & Riggs, 2016) as a reference to evaluate NWM-R2 SCAF because the 

improvements/revisions to MODIS-C6 (i.e., accounting for the surface temperature and 

surface height) led to a notable increase in accuracy of snow cover detection on mountain 

ranges and low illumination conditions in the Northern Hemisphere during spring and 

summer (Riggs, Hall, & Román, 2017). 

The MODIS-C6 snow algorithm is designed to detect snow cover based on the 

normalized ratio of the differences in reflectance in band 4 (centred at 0.56 μm, visible green)

and band 6 (centred at 1.64 μm) of the MODIS instrument with revisions applied to alleviate 

snow detection commission errors (reported for previous versions) for which snow detection 

is uncertain. The MODIS-C6 supplies the Normalized Difference Snow Index (NDSI) rather 

than snow cover (product name: NDSI_Snow_Cover). This approach allows users to have the

option to modify the NDSI using the global empirical model or develop region-specific 

models (Riggs, Hall, & Román, 2016; Aalstad et al., 2020). In this study, we first developed a

script to retrieve average NDSI_Snow_Cover (500 m spatial resolution) for each NWM grid 

cell containing a SNOTEL site (1 km spatial resolution) from Google Earth Engine (Garousi-

Nejad & Tarboton, 2021b). Valid NDSI_Snow_Cover values range between 0-100 with 

values above 100 indicating missing data, no decision, night, inland water, ocean, cloud, and 
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detector saturated issues, masked out in Google Earth Engine. The returned MODIS images 

thus have spatial gaps due to the masking. We filled gaps in each image with 

NDSI_Snow_Cover from the most previous valid value (forward filling). Then, we applied 

the globally-determined linear model of Riggs et al. (2016) to compute MODIS-C6 SCAF 

from NDSI_Snow_Cover values [Equation (1)]. 

SCAF = min[max(-0.01 + 1.45 × NDSI, 0 ), 1] where NDSI  [0,1]∈ (1)

The resulting data set includes 2,504,102 site-days in the period of overlap between 

NWM-R2 and SNOTEL data. We organized the SNOTEL sites into subgroups using 

Omernik Ecoregions level III (Omernik & Griffith, 2014) available from the Commission for 

Environmental Corporation 

(http://www.cec.org/north-american-environmental-atlas/terrestrial-ecoregions-level-iii/) to 

identify regional differences in model results versus observations. The ecoregions are areas 

with general similarities in location, climate, vegetation, hydrology, terrain, wildlife, and land

use and have been used in multiple prior studies (Sun et al., 2019; Trujillo & Molotch, 2014).

2.4 Metrics

We used several metrics to compare NWM-R2 snow water equivalent (SWE), snow 

covered area fraction (SCAF), precipitation (P), and snowmelt timing against SNOTEL SWE 

and MODIS-C6 SCAF. 

 First day of the month comparisons were used for NWM-R2 SWE (modeled) 

versus SNOTEL SWE (observed) for months Nov-Jun. Monthly precipitation 

and average air temperature were also compared for these months. These 

monthly comparisons let us evaluate the seasonal variability of snow in both 

modeled and observed datasets for data in the period of overlap between NWM-

R2 and SNOTEL data. 

 We also compared SWE on the date of observed peak SWE (same day 

comparison) and observed and modeled peak SWE (different day comparison), 

and SCAF on these same and different dates. Total precipitation accumulated 

from the start of the water year, Oct 1, to the date of peak SWE was also 

computed to assess the degree to which differences may be attributable to 

precipitation differences. This was done for both same day (observed peak SWE) 

and different day (observed and modeled peak day) comparisons. The different 

peak day comparison addresses the possibility that peak modeled and observed 
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SWE may be close, but appear further apart in same day comparisons due to a 

timing mismatch. 

 To compare the melt timing, we used the half melt from peak SWE date (Clow, 

2010). This date, when half the snowpack has melted serves as a measure of melt 

timing somewhat robust to small fluctuations or a long period where SWE is flat 

near the peak. We categorized the differences between observed and modeled half

melt dates as close (within 5 days), model early (the model is 6 to 19 days ahead 

of observed), model late (the model is 6 to 19 days after observed), and far apart 

(the modeled and observed differ by 20 days or more).

We also computed commonly used statistics: 

 Coefficient of determination [r2, Equation (2)] that ranges from -1 to 1 with 1 

indicating a perfect positive linear relationship but insensitive to proportional 

differences between modeled and observed data; 

 Spearman’s rank correlation [Spearmanr, Equation (3)], a non-parametric measure

of correlation used to measure the strength of association between modeled and 

observed values where value 1 means a perfect positive correlation;

 Root mean square error [RMSE, Equation (4)], a measure of how concentrated the

data are around the line of best fit;

 Nash Sutcliffe efficiency [NSE, Equation (5)], a normalized statistic that 

determines the relative magnitude of the residual variance compared to observed 

values ranging from - to 1 with 1 indicating observed and modeled data fits the 

1:1 line; and

 Bias [Bias, Equation (6)], the average of the difference between modeled and 

observed. 

r 2= [ ∑
t=1

N

(Mt - Ot )( M t- Mt )

√∑t=1

N

(Ot - Ot )
2∑

t=1

N

(M t - M t )
2 ]

2 (2)

Spearmanr =  1-

6∑
t=1

N

d t
2

N( N2-1)

(3)
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R MSE = √∑t=1

N

(Ot -Mt )
2

N
 

(4)

NSE =  1- 
∑
t=1

N

(O t- Mt )
2

∑
t=1

N

(O t- Mt )
2

(5)

Bias = 
∑
t=1

N

( M t- Ot )

N

(6)

where Mt is model simulation, Ot is observation, N is the total number of simulations or 

observations, dt is difference between observed and modeled rank, and the overbar indicates 

average.

3. RESULTS 

3.1 Seasonal (Monthly) Comparison 

We compared the NWM-R2 SWE results with observations from SNOTEL and found

a persistent bias in modeled SWE across most months (Figure 3). Results show that 

throughout the accumulation phase (Nov-Feb), the rank correlation between observed and 

modeled SWE increases (Spearmanr from 0.7 to 0.8). However, this does not necessarily 

indicate an acceptable model performance. The discrepancies between the observed and 

modeled SWE increase as snow accumulates (RMSE 21 to 135 mm). In the ablation phase 

(Mar-Jun), the rank correlation decreases, and discrepancies are highest in May (Bias -149 

mm, RMSE 292 mm). The increasing scatter in later months (Figure 3) shows that the NWM 

generally performs well during the accumulation phase but simulates SWE less well during 

the ablation phase. Most points fall below the 1:1 line (red line). The points clustered into 

vertical and horizontal lines on the bottom and left axes of scatter plots in May and Jun 

indicate early and late modeling of complete melt out, respectively.

[Insert Figure 3]

The comparison between the NWM-R2 SCAF and estimates from MODIS-C6 

revealed that the modeled SCAF is highly uncorrelated with what is detected by satellite 

imagery (Figure 4). Throughout the last three months of the accumulation phase (Dec-Feb), 
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the NWM results show that more than 70% of points (each representing one NWM grid cell 

that includes a SNOTEL site and a water year) have SCAF 0.9-1, while less than 10% have 

SCAF 0-0.1 (histograms in Figure 4). In contrast to the binary behaviour of the NWM-R2 

SCAF, MODIS SCAF exhibits gradual increases and decreases. At most, 30% of the 

observed data have SCAF values ranging from 0.9-1 during the accumulation phase. In 

December, 14% of the observed data have SCAF greater than 0.9, while about 70% of 

modeled points have SCAF greater than 0.9. During the ablation phase (Mar-Jun), both 

modeled and observed datasets have relatively a similar data percentage with SCAF less than 

0.1. However, the portion of the points where modeled SCAF is above 0.9 is still much more 

significant (3-7 times depending on the month) than those in the observed dataset (histograms

in Figure 4). 

[Insert Figure 4]

The SCAF comparisons above are only at SNOTEL sites. We did not undertake the 

computation needed to compare NWM-R2 and MODIS-C6 for all grid cells and dates. 

However, as an illustration for locations beyond SNOTEL sites NWM-R2 and MODIS-C6 

SCAF maps on Dec 1, 2011 (Figure 5) show that while patterns are generally the same, 

MODIS SCAF seems less than modeled. Note that the MODIS-C6 SCAF map (Figure 5a) 

has gaps and cloud areas (grey) that we did not fill in from the most recent previous image 

with data (as described in Section 3) for this visualization. NWM-R2 SCAF covers the entire 

region selected based on the MODIS tiles. The visual comparison of a zoomed-in map for the

region where observed SCAF were available for more than 90% of the area reveals both 

similarities and differences between NWM-R2 and MODIS-C6 datasets (Figure 5c and 5d). 

The NWM-R2 SCAF map for the zoomed-in area shows more white regions (i.e., SCAF 

values greater than 0.9), suggesting that NWM tends to overestimate SCAF compared to 

observations from MODIS.

[Insert Figure 5]

Scatterplots of monthly precipitation (Figure 6) indicate model input precipitation 

generally less than measured at SNOTEL sites, possibly contributing to under-modeling of 

SWE (Figure 3). Spearmanr and NSE values show an acceptable correlation between 

modeled and observed monthly precipitation (on average, 0.8 for both statistics). However, 

the precipitation bias is larger during the accumulation phase than the ablation phase, 

suggesting that increased SWE scatter, in the ablation phase, is less associated with 

precipitation input errors than other factors during the ablation phase snowmelt.

[Insert Figure 6]
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Elevation, through orographic effects, is often suspected as a contributor to 

precipitation bias. However, the comparison of model input elevation (1 km grid cell) with 

SNOTEL point elevation (Figure 2) indicated no bias and small scatter (r2=0.98 in Figure 2c).

There are, nevertheless, discrepancies between the NWM-R2 monthly averaged air 

temperature inputs and the monthly averages of the daily mean air temperature measured at 

SNOTEL sites (Figure 7), reported as the 24-hour average of a minimum four samples per 

hour (USDA, 2011). NWM-R2 air temperatures are generally slightly below observations. 

This is counter to the direction needed to explain discrepancies in SWE as colder model input

air temperatures should result in (1) greater fractions of precipitation as snowfall and (2) 

slower rather than quicker snowmelt, both processes that increase rather than decrease SWE.

[Insert Figure 7]

The seasonal pattern of SWE and SCAF averaged across all SNOTEL site years for 

each specific day (Figure 8) further indicates the general under modeling of SWE and over 

modeling of SCAF relative to SNOTEL and MODIS observations, respectively. 

[Insert Figure 8]

Discrepancies between the seasonal pattern of SWE and SCAF are regional and 

somewhat different for SWE than SCAF (Figure 9 and Figure 10, respectively). The NWM 

SWE was better in the Klamath Mountains, Blue Mountains, and Central Basin and Range 

(region 9, 2, and 5, respectively, in Figure 9) with SWE bias differences tending to become 

larger further to the north and east across the study region. However, the NWM SCAF are 

closer to the observations in the Northern Basin and Range, Sierra Nevada, and Central Basin

and Range regions (regions 12, 13, and 5, respectively, in Figure 10), with SCAF differences 

tending to become larger the further away regions are from the Central Basin and Range 

region.

[Insert Figure 9]

[Insert Figure 10]

3.2 Observed Peak SWE (Same Day and Different Day) Comparison 

The scatterplot of modeled versus observed SWE on the date of peak observed SWE 

(Figure 11a) indicates a general downward bias in modeled SWE. NWM SCAF clusters 

around 1 on this date (histograms in Figure 11b) while MODIS SCAF is more fractional, and 

similar to monthly SCAF the point comparisons are scattered and poor. Precipitation 

accumulated from Oct 1 to the date of observed peak SWE indicates model input 

precipitation generally less than SNOTEL observed (Figure 11c: Bias -111 mm, RMSE 212 

mm). This suggests that under estimation of model precipitation inputs may be a contributor 
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to under modeling of peak SWE. This comparison may also be influenced by the fact that 

observed SWE is at its peak, but modeled SWE is not.

[Insert Figure 11]

We also compared observed and modeled peak SWE, noting that these do not 

necessarily occur on the same date (Figure 12). Results are similar to the observed peak SWE

date comparison. Here the accumulated observed and modeled precipitation (Figure 12c) are 

over the accumulation period, to their respective peak SWE dates, a possible reason for 

increased scatter and poorer error metrics in this figure.

[Insert Figure 12]

Under modeling of SWE is also evident when comparing the observed and modeled 

peak SWE for a subset of SNOTEL sites where the model precipitation is relatively close to 

the observed (Figure 13b: Bias -96 mm, RMSE 168 mm). However, the errors are less than 

for the entire dataset SWE comparison. We chose this subset of sites based on the NSE 

measure between daily model input and observed precipitation being greater than or equal to 

0.9 computed over the full study period. This subset shows a reduced bias (compared to the 

entire dataset) between the observed and modeled precipitation accumulated from Oct 1 to 

peak observed SWE date (Figure 13a).

[Insert Figure 13]

3.3 Melt Timing Comparison 

For 68% of the site years analyzed, the modeled half melt date was earlier than 

observed. When further classified based on whether modeled half melt dates were close, 

ahead, behind or far apart from observed melt dates (Figure 14) we observe that the NWM 

half melt date was greater than 20 days from observed half melt date, for 34% of the site 

years, and off by 6 days or more for 75% of site years. For those site years where the 

difference was between 5 and 20 days, a greater percentage had the model melting ahead, 

than behind the observed. The site years that have modeled half melt date ahead of observed 

tend to have lower modeled half melt date SWE (which is by definition half the peak SWE) 

than observed (Figure 14b).

[Insert Figure 14]

4. DISCUSSION 

The seasonal pattern of SWE and SCAF averaged across all SNOTEL site years 

shows that NWM generally under-estimates SWE and over-estimates SCAF relative to 

SNOTEL and MODIS observations, respectively. These discrepancies vary regionally with 
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relatively better SWE results in the Arizona/New Mexico Mountains, Blue Mountains, and 

Central Basin and Range ecoregions; and better SCAF results in the Central Basin and Range

and Sierra Nevada ecoregions tending to become larger the further away regions are from the 

Central Basin and Range. There are several sources of uncertainties in our comparisons that 

need to be pointed out. We compared SNOTEL site values to the single NWM grid cell 

values for the grid cell containing each SNOTEL site. We realize that using other approaches,

such as bilinear or cubic interpolation of NWM grid values would give different values at 

each SNOTEL site, a question we did not explore.

Precipitation discrepancies suggest that SWE differences are partly due to 

discrepancies between observed precipitation and model input precipitation. There are 

multiple possible sources of uncertainty that may lead to this difference. First, SNOTEL 

latitude and longitude locations may not be precise in the geographic information from 

SNOTEL, as, for site security, exact site locations may not be reported. This may result in 

selecting a non-representative 1 km NWM grid cell. Second, there may be systematic bias for

gage precipitation, particularly with snowfall measurements being subject to “under-catch”

(Mote, 2003; Sun et al., 2019). However, we note that model input precipitation was typically

less than measured at SNOTEL sites, indicating that if under catch is an issue, it may be ‐

larger in the data used to produce model inputs. In NWM version 2.0, a mountain mapper 

adjustment has been applied to obtain input precipitation from NLDAS-2 (RafieeiNasab et 

al., 2020); nevertheless, there are still differences and biases compared to SNOTEL 

measurements that may be impacting model results. Third, there are also errors in SWE 

measurements due to factors such as wind causing snowdrifts on the snow pillow, or the 

small clearing SNOTEL site location not being representative of larger scale snowpack. It 

was not uncommon to see SWE greater than accumulated precipitation measured at SNOTEL

sites, which could be due to either precipitation under-catch, or inflated SWE. 

Our results show a cold (downward) bias for the model input air temperature 

compared to SNOTEL sites' observations. This is different from Naple et al. (2020), who 

reported a warm (upward) bias for the NWM retrospective runs compared to the New York 

State Mesonet observations. The cold bias in the model temperature input is counter to the 

direction expected to lead to the under-modeling of SWE, which needs more investigation.

The discrepancies in model inputs appear to be not the only sources responsible for SWE 

differences. For sites with statistically highly correlated precipitation input (NSE>0.9), the 

results indicate that some SWE bias, potentially due to other factors, still remains. This opens

up the question as to whether there are other deficiencies in the model that lead to SWE 
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under-modeling. The partitioning of precipitation into rainfall and snowfall has been 

identified as one problem area within the NWM land surface model [i.e., Noah-MP] (Wang et

al., 2019; Naple et al., 2020). Wang et al. (2019) suggest that using a snow-rain partitioning 

scheme based on the wet-bulb temperature within Noah-MP produces more snowfall and 

snow mass on the ground that agrees better with ground-based snow observations, 

particularly over mountainous regions in the Western U.S. Recently, Naple et al. (2020) 

shows that using the precipitation phase partition from the high-resolution rapid refresh 

(HRRR), in lieu of the operational method (Jordan, 1991), leads to improved snow results for 

the NWM version 2.0 configuration.

Our results show that, on average, the NWM tends to melt snow early (6-19 days) 

compared to SNOTEL observation. For 75% of the site years, the modeled date of half melt 

from peak SWE was off by 6 days or more from the observed half melt dates, sometimes 

being as far apart as 2 months (for example, Magic Mountain SNOTEL site, ID: 610 in 

Idaho, at water year 2010). This suggests that the modeling of melt timing is somewhat 

problematic and there is a need to further investigate overall energy balance and snow surface

temperature, possibly drawing on ideas from the Utah Energy Balance model (Mahat & 

Tarboton, 2014; You, Tarboton, & Luce, 2014). 

Overall, NWM-R2 SCAF was difficult to compare to MODIS-C6 SCAF using single 

SNOTEL sites and days. Some of this difficulty, manifested in the scatter in Figures 4, 11 

and 12, may reflect the fact that the MODIS and NWM SCAF quantities are not really the 

same thing. MODIS may be interpreting vegetation as snow free, while NWM has snow 

beneath vegetation. In NWM-R2 results, the persistent low and high SCAF (<0.1 and >0.9, 

respectively) reflects that NWM treats SCAF as a binary metric in mountainous regions. 

NWM-R2 SCAF values stay near 1 with less variability between Dec-Apr for more than 70%

of cases. This suggests that once the NWM grid cell (1 km spatial resolution) is more than 

90% snow-covered, it is implausible for it to diverge from 1 for the rest of the accumulation 

phase and early ablation phase. This has also been noted by others (Helbig et al., 2015; 

Magand et al., 2014; Swenson & Lawrence, 2012; Wrzesien et al., 2015). 

We recognize that the SCAF mapped from MODIS in this study also has uncertainties and 

limitations. First, the temporal forward filling approach that we used to fill gaps associated 

with clouds may miss some of the daily variability of snow cover, particularly in 

mountainous regions. Second, the parameters of Equation (1), which estimates SCAF from 

MODIS-C6 NDSI_Snow_Cover product, were those from Salomonson and Appel (2006) and

were constant for our entire study region. Adjusting these parameters to improve the snow 
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cover products from MODIS regionally has been suggested (Riggs, Hall, & Román, 2017). 

Third, MODIS NDSI_Snow_Cover grids (nominally 500 m) were averaged for 1 km NWM 

grid cells, using an unweighted approach in the Google Earth Engine platform. This approach

selects MODIS grids whose centers fall within the target area (i.e., NWM grid cells). These 

scale differences may be a further source of uncertainty, compounded by the nonlinearity in 

Equation (1) [plateau at NDSI > 0.7] having an impact on SCAF from averaged NDSI. 

5. CONCLUSIONS

A cell by cell comparison for sites and dates in the period of overlap between 

SNOTEL SWE with modeled SWE from NWM-R2 simulations, in general, shows that there 

is a tendency of NWM to under-estimate SWE early in the season and become progressively 

more biased late in the season compared to in situ observations of SWE. When aggregated 

across all sites and years, seasonal variations show an overall downward bias of about 55 mm

with NSE 0.75 which varies regionally over Omernik ecoregions. SWE discrepancies were 

attributed to errors in inputs, notably precipitation and air temperature. The downward bias in

precipitation input contributes to the downward biases in SWE and the SWE bias is persistent

even when the model precipitation input is relatively close to the observed precipitation at 

SNOTEL sites with daily precipitation NSE higher than 0.9. However, the cold bias in the 

model temperature input is counter to the direction expected to lead to under-modeling of 

SWE. This needs further exploration. There was a significant variability between the MODIS

SCAF and NWM SCAF in the cell by cell comparison for sites and dates in the period of 

overlap between model results and observations which hindered useful interpretation of these 

comparisons. The challenge in simulating SCAF is in part due to the model SCAF essentially 

being binary while observations are much more fractional. They may not reflect the same 

physical quantity. However, when aggregated across all sites and years, seasonal variations 

show an overall upward bias of 0.12 with NSE 0.76 which vary regionally for ecoregions. 

Our investigation opens some new questions for future research. First, it emphasizes the 

importance of having a more accurate (bias corrected) precipitation and air temperature input 

for the NWM. Second, there is a question as to whether, in circumstances where NWM 

struggles to accurately simulate SCAF, the SCAF parameterization should be improved or 

can be inferred from satellites. Using satellite-based snow-covered maps may potentially 

provide an approach or an opportunity for estimating SCAF as a way to overcome limitations

associated with parameterization of SCAF in the snow model. However, there would need to 

be resolution of differences in definition of the physical quantity being compared. Overall, 
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our evaluation effort identifies some challenges in the current snow parameterization within 

the NWM and suggests where potential development effort should be directed in the future. It

would also be helpful, for future work, to have and use a more comprehensive observation 

data set that includes snowfall/rainfall measurements, canopy snow interception, turbulence 

and radiation fluxes above and below the canopy, and high-resolution snow-covered area 

information, to assess any model improvements.

DATA AVAILABILITY

All data sources used in this research are publicly available. 

 The NWM-R2 are available at the NOAA Google Cloud archive at 

https://console.cloud.google.com/storage/browser/national-water-model-v2?pli=1. 

The precipitation and air temperature inputs were prepared by the WRF-Hydro NCAR

but are available on HydroShare for reproducibility purposes (Garousi-Nejad & 

Tarboton, 2021c). The NWM elevation dataset are available at 

https://www.nco.ncep.noaa.gov/pmb/codes/nwprod/nwm.v2.0.4/parm/domain/  

 The NRCS SNOTEL data are available at https://www.wcc.nrcs.usda.gov/snow/ 

 The NASA MODIS data are available at https://nsidc.org/data/MOD10A1/versions/6

 The Omernik ecoregions are available at http://www.cec.org/north-american-

environmental-atlas/terrestrial-ecoregions-level-iii/ 

All codes developed for this research are shared and publicly available on HydroShare and 

will be published for the reproducibility of the results after the review process (Garousi-

Nejad & Tarboton, 2021d). 
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FIGURE LEGENDS 

Figure 1. Snow water equivalent from the NWM version 2.0 reanalysis (NWM-R2) dataset 

compared to in-situ observations at two SNOTEL sites in Utah. (a) Hole-in-Rock site 

(ID: 528) located at 2794 m elevation for the water year 2008. (b) Tony Grove Lake 

site (ID: 823) located at 2582 m elevation for the water year 2018.

Figure 2. (a) SNOTEL sites (734 black dots) across the Western United States. (b) Illustrative

relationship of Tony Grove Lake, Utah SNOTEL site (ID: 823), within NWM grid 

cells with a spatial resolution of 1 km and MODIS grid cells with a spatial resolution 
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of 463 m (nominally 500 m). (c) NWM grid cell elevation vs. elevation reported for 

SNOTEL sites (observed).

Figure 3. First day of month modeled (NWM-R2) vs. observed (SNOTEL) SWE. Each point 

is a site and date in the period of overlap between NWM-R2 and SNOTEL data.

Figure 4. First day of month modeled (NWM-R2) vs. observed (MODIS-C6) SCAF for 

NWM grid cells and MODIS grid cells containing SNOTEL sites. Each point is a site 

and a date within the period of overlap between NWM and MODIS data. Axis 

histograms depict the SCAF distributions.

Figure 5. Comparison of NWM-R2 and MODIS-C6 SCAF maps over the study region on 

Dec 1, 2011. (a) MODIS-C6 SCAF estimated from NDSI_Snow_Cover values of five

tiles (in grey). (b) NWM-R2 SCAF outputs at 00:00 UTC masked for the MODIS-C6 

tiles. (c) The zoomed-in map of MODIC-C6 SCAF for the blue box in (a). (d) The 

zoomed-in map of NWM-R2 SCAF for the blue box in (b).

Figure 6. Comparison between NWM-R2 monthly precipitation input (labeled as modeled) 

and SNOTEL monthly precipitation (labeled as observed). Each point is a site and 

month in the period of overlap between NWM-R2 and SNOTEL data.

Figure 7. Comparison between NWM-R2 monthly average of hourly air temperature input 

(labeled as modeled) and SNOTEL monthly average of mean daily air temperature 

(labeled as observed). Each point is a site and month in the period of overlap between 

NWM-R2 and SNOTEL data.

Figure 8. Modeled and observed (a) SWE and (b) SCAF averaged across all SNOTEL sites 

and years for each specific day of the (water) year.

Figure 9. Modeled and observed SWE averaged across all SNOTEL sites and years for each 

specific day of the (water) year grouped by ecoregion. The map shows 15 Omernik 

ecoregions where colours represent the bias.

Figure 10. Modeled and observed SCAF averaged across all SNOTEL sites and years for 

each specific day of the (water) year grouped by ecoregion. The map shows 15 

Omernik ecoregions where colours represent the bias.

Figure 11. Comparisons on date of observed peak SWE. (a) NWM-R2 vs. SNOTEL SWE, 

(b) NWM-R2 vs. MODIS-C6 SCAF, and (c) NWM-R2 vs. SNOTEL precipitation 

accumulated from Oct 1 to observed peak SWE date. Each point is a site and a water 

year (that starts Oct 1) in the period of overlap between NWM-R2 and SNOTEL data.

Figure 12. Different date comparison on dates of observed and modeled peak SWE (a) 

NWM-R2 vs. SNOTEL peak SWE, (b) NWM-R2 vs. MODIS-C6 SCAF, and (c) 
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NWM-R2 vs. SNOTEL precipitation accumulated from Oct 1 to observed and 

modeled peak SWE dates. Each point is a site and a water year (that starts Oct 1) in 

the period of overlap between NWM-R2 and SNOTEL data. 

Figure 13. (a) NWM-R2 vs. SNOTEL precipitation accumulated from Oct 1 to observed and 

modeled peak SWE dates. This figure is similar to Figure 10 (a) but with colours 

separating points into two groups. The first group (dark blue) contains points where 

Nash Sutcliffe Efficiency (NSE) values for daily modeled vs. observed precipitation 

are equal to or greater than 0.9. The second group (light blue) includes points where 

NSE values for daily modeled vs. observed precipitation are less than 0.9. Statistics 

are reported separately for the NSE >= 0.9 and NSE < 0.9 subsets. (b) NWM-R2 peak

SWE vs. SNOTEL peak SWE for points from (a) that have daily precipitation NSE 

equal to or greater than 0.9 (dark blue class).

Figure 14. Analysis of melt timing. (a) Classification of differences between observed and 

modeled dates of half melt from peak SWE. Close: modeled and observed within 5 

days of each other; Behind: modeled 6 to 19 days after observed; Ahead: modeled 6 

to 19 days before observed; Far apart: Modeled and observed more than 20 days 

apart. (b) NWM-R2 SWE vs. SNOTEL SWE date of half melt from peak.
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