ROUGH DRAFT authorea.com/99536
Main Data History
Export
Show Index Toggle 0 comments
  •  Quick Edit
  • Dusty Fibers

    Introduction

    We are interested in GALFA-HI fibers. They tell us about the B-field. But how do they relate the microphysics? Two important unanswered questions are: do they have a characteristic width? There are arguments for a particular width, but GALFA-HI does not have the resolution to resolve them. And what is their dust content? Small grains control ISM heating, as they dominate the surface area, large grains control ISM metal content, as they dominate the grain volume. Both are important indicators of the content of the fibers. To check these we use Planck 353 emission data and WISE emission maps from (Meisner 2013) and compare to the GALFA-HI DR2 data cubes

    Data

    We snooped around for a region of sky in the (Meisner 2013) maps that fulfilled the following criteria

    • Was in the Arecibo field of view and thus DR2

    • Was not contaminated by a lot of junk.

    • Had clear fiber-like features

    • Didn’t have much “dark” H2 or CO.

    Since the dust maps, both 12 micron and 300 micron, are much less sensitive than the HI maps, we had to look at intermediate latitudes but avoid (Magnani 1985)-like clouds and other high latitude molecular clouds. We found the region WISE-306, 12 degrees on a side, centered at RA = 11.5\(^\circ\), Dec=30\(^\circ\). We then remapped the WISE data to somewhat bigger pixels, and then sampled the GALFA-HI DR2 data cube on those pixels, as well as the Planck extinction map.

    Methods and Results

    First thing we did is run the RHT algorithm (some reasonable parameters) on each of the HI data slices (binned at 4x 0.736 = 3 km/s) relevant to the fibers. Then we made masks from each of those RHT results. In particular, we chose the angle range that corresponded to the HI fiber direction, and integrated the RHT, and set a threshold of 0.1 to make a bitmask. This gives a reasonable mask that “finds” the fibers. Then, using dialation, we make an “off” mask for each velocity slice. We then concatenate these masks. On masks are shown in red, off in blue below.

    We then take the WISE map and smooth it to the Planck resolution. We try to be very careful to get it just right, as it the results are sensitive to this. We then find the average flux in the WISE map in the fibers / flux in the off mask. Same for Planck, and the total HI column. We exclude the top of the region where there seems to be some dark H2.

    We find that the total HI is enhanced a little in this region, as expected; about 1.5%. Planck dust emission is somewhat more enhanced than this (1.9%) and wise is more than twice as enhanced (3.8%). This indicates that the fibers are more dusty than the surrounding gas, and that they are especially enhanced in small grain / PAH 12 micron emission.

    CAVEATS: haven’t smoothed the GALFA-HI data. Not totally sure how sensitive this is to RHT parameters. Also not sure how sensitive it is to getting WISE smoothing dead right.

    Gray background is WISE smoothed to Planck (5’). Blue is off, Red is on for each. lower right is the composite mask and results for WISE, Planck. GALFA-HI ON/OFF ratios in title.