Mode 3,\(\left(1-D\right)T_{s}\leq t\leq(1-D)T_{s}+\frac{T_{s}}{2}\): In this mode, the switches \(G_{2}\) and \(G_{3}\) are on, while\(G_{1}\) and \(G_{4}\) are off. The following equations are resulted in this mode.
\(V_{L1}=V_{\text{in}}-V_{c2}\)                                                        (10)
\(V_{L2}=V_{L3}=V_{\text{in}}\)                                                       (11)
\(V_{L4}=V_{\text{in}}-V_{c4}\)                                                         (12)
Therefore inductors \(L_{2}\) and \(L_{3}\) are charged with the rate of\(\ \frac{V_{\text{in}}}{L_{2}}\) and\(\frac{V_{\text{in}}}{L_{3}}\), respectively. Also the voltages of inductors \(L_{1}\) and \(L_{4}\) are reduced with the rate of \(\frac{(V_{\text{in}}-V_{c2})}{L_{1}}\)and\(\ \frac{(V_{\text{in}}-V_{c4})}{L_{4}}\). This mode is shown in Fig. 5.
Mode 4\(,\ \frac{T_{s}}{2}+\left(1-D\right)T_{s}\leq t\leq T_{s}\): In this mode, the switches \(G_{2}\) and \(G_{4}\) are on, while\(G_{1}\) and \(G_{3}\) are off. The following equations are resulted in this mode.
\(V_{L1}=V_{L2}=V_{\text{in}}-V_{c2}\)                                          (13)
\(V_{L3}=V_{L4}=V_{\text{in}}\)                                                          (14)
Therefore inductors \(L_{3}\) and \(L_{4}\) are charged with the rate of\(\frac{V_{\text{in}}}{L_{3}}\) and\(\ \frac{V_{\text{in}}}{L_{4}}\), respectively. Also the voltages of inductors \(L_{1}\) and \(L_{2}\) are reduced with the rate of \(\frac{(V_{\text{in}}-V_{c2})}{L_{1}}\)and\(\frac{(V_{\text{in}}-V_{c2})}{L_{2}}\). This mode is shown in Fig. 6.