References

Arnell, N.W., 1999. The effect of climate change on hydrological regimes in Europe: a continental perspective. Glob. Environ. Change 9(1), 5–23. https://doi.org/10.1016/S0959-3780(98)00015-6
Bales, R.C., Molotch, N.P., Painter, T.H., Dettinger, M.D., Rice, R., Dozier, J., 2006. Mountain hydrology of the western United States. Water Resour. Res. 42. https://doi.org/10.1029/2005WR004387
Barros, V.R., Field, C.B., Dokke, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L., 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Pp. 190
Barry, R.G., 1992. Mountain climatology and past and potential future climatic changes in mountain regions: A review. Mt. Res. Dev. 12, 71-86. https://doi.org/10.2307/3673749
Bavay, M., Grünewald, T., Lehning, M., 2013. Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland. Adv. Water Resour. 55, 4–16. https://doi.org/10.1016/j.advwatres.2012.12.009
Beniston, M., 2003. Climatic change in mountain regions: a review of possible impacts, in: Climate variability and change in high elevation regions: past, present & future. Clim. Change 59, 5–31. https://doi.org/10.1023/A:1024416227887
Beniston, M., Keller, F., Ko, B., Goyette, S., 2003. Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor. Appl. Climatol. 76, 125–140. https://doi.org/10.1007/s00704-003-0016-5
Berghuijs, W.R., Woods, R.A., Hrachowitz M., 2014. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4(7), 583–586. https://doi.org/10.1038/nclimate2246
Bower, D., Hannah, D.M., McGregor, G.R., 2004. Techniques for assessing the climatic sensitivity of river flow regimes. Hydrol. Process. 18, 2515–2543. https://doi.org/10.1002/hyp.1479
Bunbury, J., Gajewski, K., 2012. Temperatures of the past 2000 years inferred from lake sediments, southwest Yukon Territory, Canada. Quat. Res. 77, 355– 367. https://doi.org/10.1016/j.yqres.2012.01.002
Casola, J.H., Cuo, L., Livneh, B., Lettenmaier, D.P., Stoelinga, M.T., Mote, P.W., Wallace, J.M., 2009. Assessing the impacts of global warming on snowpack in the Washington Cascades. J. Clim. 22, 2758–2772. https://doi.org/10.1175/2008JCLI2612.1
Cayan, D.R., 1996. Interannual climate variability and snowpack in the western United States. J. Clim. 9, 928–947. https://doi.org/10.1175/1520-0442(1996)009<0928:ICVASI>2.0.CO;2
Colbeck, S.C., 1976. An analysis of water flow in dry snow. Water Resour. Res. 12(3), 523–527. https://doi.org/10.1029/WR012i003p00523
Diaz, H.F., Grosjean, M., Graumlich, L., 2003. Climate variability and change in high elevation regions: past, present and future. Clim. Change. 59(1-2), 1–4. https://doi.org/10.1023/A:1024416227887
Fang, X., Pomeroy, J.W., 2020. Diagnosis of future changes in hydrology for a Canadian Rockies headwater basin. Hydrol. Earth Syst. Sci., 24, 2731–2754. https://doi.org/10.5194/hess-24-2731-2020.
Fang, X., Pomeroy, J.W., DeBeer, C.M., Harder, P., Siemens, E., 2019. Hydrometeorological data from Marmot Creek Research Basin, Canadian Rockies. Earth Syst. Sci. Data 11(2), 455–471. https://doi.org/10.5194/essd-11-455-2019
Fang, X., Pomeroy, J.W., Ellis, C.R., MacDonald, M.K., DeBeer, C.M., Brown, T., 2013. Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains. Hydrol. Earth Syst. Sci. 17(4), 1635–1659. https://doi.org/10.5194/hess-17-1635-2013
Fowler, H., Blenkinsop, S., Tebaldi, C., 2007. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 27, 1547– 1578. https://doi.org/10.1002/joc.1556
Fyfe, J.C., Flato, G.M., 1999. Enhanced climate change and its detection over the Rocky Mountains. J. Clim. 12, 230–243. https://doi.org/10.1175/1520-0442(1999)012<0230:ECCAID>2.0.CO;2
Graversen, R.G., Mauritsen, T., Tjernstrom, M., Kallen, E., Svensson, G., 2008. Vertical structure of recent Arctic warming. Nature 451, 53–56. https://doi.org/10.1038/nature06502
Harder, P., Pomeroy, J.W., Westbrook, C.J., 2015. Hydrological resilience of a Canadian Rockies headwaters basin subject to changing climate, extreme weather, and forest management. Hydrol. Process. 29, 3905–3924. https://doi.org/10.1002/hyp.10596
Hay, L.E., Wilby, R.L., Leavesley, G.H., 2000. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 36, 387–397. https://doi.org/10.1111/j.1752-1688.2000.tb04276.x
Jennings, K.S., Molotch, N.P., 2019. The sensitivity of modeled snow accumulation and melt to precipitation phase methods across a climatic gradient, Hydrol. Earth Syst. Sci. 3765–3786. https://doi.org/10.5194/hess-23-3765-2019.
Jasper, K., Calanca, P., Gyalistras, D., Fuhrer, J., 2004. Differential impacts of climate change on the hydrology of two alpine river basins. Clim. Res. 26, 113–129. https://doi.org/10.3354/cr026113
Kawase, H., Yoshikane, T., Hara, M., Kimura, F., Yasunari, T., Ailikun, B., Ueda, H., Inoue, T., 2009. Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res. Atmos. 114. https://doi.org/10.1029/2009JD011803.
Kay, A., Davies, H., Bell, V., Jones, R., 2009. Comparison of uncertainty sources for climate change impacts: flood frequency in England. Clim. Change 92, 41–63. https://doi.org/10.1007/s10584-008-9471-4
Lettenmaier, D. P., and T. Y. Gan (1990), Hydrologic sensitivities of the Sacramento‐San Joaquin River basin, California, to global warming. Water Resour. Res. 26(1), 69-86. https://doi.org/10.1029/WR026i001p00069
López-Moreno, J., Boike, J., Sanchez-Lorenzo, A., Pomeroy, J., 2016. Impact of climate warming on snow processes in Ny-Alesund, a polar maritime site at Svalbard. Glob. Planet. Change 146, 10–21. https://doi.org/10.1016/j.gloplacha.2016.09.006
López-Moreno, J., Pomeroy, J., Revuelto, J., Vicente-Serrano, S., 2013. Response of snow processes to climate change: spatial variability in a small basin in the Spanish Pyrenees. Hydrol. Process. 27, 2637–2650. https://doi.org/10.1002/hyp.9408
López-Moreno, J.I., Revuelto, J., Gilaberte, M., Moran-Tejeda, E., Pons, M., Jover, E., Esteban, P., Garca, C., Pomeroy, J., 2014. The effect of slope aspect on the response of snowpack to climate warming in the Pyrenees. Theor. Appl. Climatol. 117, 207–219. https://doi.org/10.1007/s00704-013-0991-0
López-Moreno, J.I., Pomeroy, J.W., Alonso-González, E., Morán-Tejeda, E., Revuelto, J., 2020. Decoupling of warming mountain snowpacks from hydrological regimes. Environ. Res. Lett. 15(11), 114006. https://doi.org/10.1088/1748-9326/abb55f
Luo, Y., Gerten, D., Le Maire, G., Parton, W. J., Weng, E., Zhou, X., Keough, C., Beier, C., Ciais, P., Cramer, W., 2008. Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Glob. Chang. Biol., 14(9), 1986–1999. https://doi.org/10.1111/j.1365-2486.2008.01629.x
MacDonald, R. J., Byrne, J. M., Kienzle, S. W., Larson, R.P., 2010. Assessing the Potential Impacts of Climate Change on Mountain Snowpack in the St. Mary River Watershed, Montana. J. Hydrometeorol. 12, 262–273. https://doi.org/10.1175/2010JHM1294.1
Malmqvist, B., Rundle, S., 2002. Threats to the running water ecosystems of the world. Environ. Conserv. 29, 134–153. https://doi.org/10.1017/S0376892902000097
Marks, D., Kimball, J., Tingey, D., Link T., 1998. The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: a case study of the 1996 Pacific Northwest flood. Hydrol. Process. 12, 1569–1587. https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1569::AID-HYP682>3.0.CO;2-L
Massey Jr., F.J., 1951. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78. https://doi.org/10.1080/01621459.1951.10500769
McCabe, G.J., Clark, M.P., 2005. Trends and variability in snowmelt runoff in the western United States. J. Hydrometeorol. 6, 476–482. https://doi.org/10.1175/JHM428.1
Mearns, L., Gutowski, W., Jones, R., Leung, L., McGinnis, S., Nunes, A., Qian, Y., 2007. The North American regional climate change assessment program dataset, National Center for Atmospheric Research Earth System Grid Data Portal, Boulder, CO. https://doi.org/10.5065/D6RN35ST, data accessed Sept 2013.
Meybeck, M., Green, P., Vorosmarty, C., 2001. A new typology for mountains and other relief classes: An application to global continental water resources and population distribution. Mt. Res. Dev. 21, 34–45. https://doi.org/10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2
Minder, J. R., 2010. The sensitivity of mountain snowpack accumulation to climate warming. J. Clim. 23(10), 2634–2650. https://doi.org/10.1175/2009JCLI3263.1
Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., et al., 2010. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756. https://doi.org/10.1038/nature08823
Mote, P.W., Hamlet, A.F., Clark, M.P. Lettenmaier, D.P., 2005. Declining mountain snowpack in western North America. Bull. Am. Meteorol. Soc. 86(1), 39–50. https://doi.org/10.1175/BAMS-86-1-39
Nayak, A., 2008. The effect of climate change on the hydrology of a mountainous catchment in the western United States: A case study at Reynolds Creek, Idaho. Utah State University. Pp. 194. https://digitalcommons.usu.edu/etd/82
Nayak, A., Marks, D., Chandler, D., Seyfried, M., 2010. Long-term snow, climate, and streamflow trends at the Reynolds Creek Experimental watershed, Owyhee Mountains, Idaho, United States. Water Resour. Res. 46. https://doi.org/10.1029/2008WR007525
Pederson, G.T., Gray, S.T., Ault, T.R., Marsh, W., Fagre, D.B., Bunn, A.G., Woodhouse, C.A., Graumlich, L.J., 2011. Climatic Controls on the Snowmelt Hydrology of the Northern Rocky Mountains. J. Clim. 24, 1666–1687. https://doi.org/10.1175/2010JCLI3729.1
Pomeroy, J., Gray, D., Brown, T., Hedstrom, N., Quinton, W., Granger, R., Carey, S., 2007. The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence. Hydrol. Process. 21, 2650–2667. https://doi.org/10.1002/hyp.6787
Pomeroy, J.W., Fang, X., Rasouli, K., 2015. Sensitivity of snow processes to warming in the Canadian Rockies. In Proceedings, 72nd Eastern Snow Conference, 9-11 June 2015, Sherbrooke, Québec, Canada, 22–33.
Pomeroy, J.W., Fang, X., Marks, D.G., 2016. The cold rain‐on‐snow event of June 2013 in the Canadian Rockies – Characteristics and diagnosis. Hydrological Processes, 30(17), 2899-2914. https://doi.org/10.1002/hyp.10905
Poulin, A., Brissette, F., Leconte, R., Arsenault, R., Malo, J.-S. 2011. Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. J. Hydrol. 409, 626–636. https://doi.org/10.1016/j.jhydrol.2011.08.057
Prowse, T.D., Wrona, F.J., Reist, J.D., Gibson, J.J., Hobbie, J.E., Lévesque, L.M., Vincent, W.F., 2006. Climate change effects on hydroecology of Arctic freshwater ecosystems. AMBIO: A J. Hum. Environ. 35(7), 347–359. https://doi.org/10.1579/0044-7447(2006)35[347:CCEOHO]2.0.CO;2
Rasouli, K., 2017. Sensitivity Analysis of Mountain Hydrology to Changing Climate. Ph.D. thesis. University of Saskatchewan, Saskatoon, Canada. Pp. 251. https://harvest.usask.ca/handle/10388/7799
Rasouli, K., Pomeroy, J.W., Janowicz, J.R., Carey, S.K., Williams, T.J., 2014. Hydrological sensitivity of a northern mountain basin to climate change. Hydrol. Process. 28, 4191–4208. https://doi.org/10.1002/hyp.10244
Rasouli, K., Pomeroy, J.W., Marks, D.G., 2015. Snowpack sensitivity to perturbed climate in a cool mid-latitude mountain catchment. Hydrol. Process. 29, 3925–3940. https://doi.org/10.1002/hyp.10587
Rasouli, K., Pomeroy J.W., and Whitfield P.H., 2019a. Hydrological responses of headwater basins to monthly perturbed climate in the North American Cordillera. J. Hydrometeorol. 20, 863–882. https://doi.org/10.1175/JHM-D-18-0166.1
Rasouli, K., Pomeroy, J.W., and Whitfield, P.H., 2019b. Are the effects of vegetation and soil changes as important as climate change impacts on hydrological processes? Hydrol. Earth Syst. Sci. 23, 4933–4954. https://doi.org/10.5194/hess-23-4933-2019
Rasouli, K., Pomeroy, J.W., Janowicz, J.R., Williams, T.J. and Carey, S.K., 2019c. A long-term hydrometeorological dataset (1993–2014) of a northern mountain basin: Wolf Creek Research Basin, Yukon Territory, Canada. Earth Syst. Sci. Data 11(1), 89–100. https://doi.org/10.5194/essd-11-89-2019
Rasouli, K., Scharold, K., Mahmood, T.H., Glenn, N.F., Marks, D., 2020. Linking hydrological variations at local scales to regional climate teleconnection patterns. Hydrol. Process. 34(26), 5624–5641. https://doi.org/10.1002/hyp.13982
Reba, M.L., Marks, D., Seyfried, M., Winstral, A., Kumar, M., Flerchinger, G., 2011. A long‐term data set for hydrologic modeling in a snow‐dominated mountain catchment. Water Resour. Res. 47(7). https://doi.org/10.1029/2010WR010030
Roche, J.W., Bales, R.C., Rice, R., Marks, D.G., 2018. Management Implications of Snowpack Sensitivity to Temperature and Atmospheric Moisture Changes in Yosemite National Park, CA. J. Am. Water Resour. Assoc. 54, 724–741. https://doi.org/10.1111/1752-1688.12647
Semadeni-Davies, A., Hernebring, C., Svensson, G., Gustafsson, L.G., 2008. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 350, 100–113. https://doi.org/10.1016/j.jhydrol.2007.05.028
Semmens, K., Ramage, J., 2013. Recent changes in spring snowmelt timing in the Yukon River basin detected by passive microwave satellite data. The Cryosphere 7, 905–916. https://doi.org/10.5194/tc-7-905-2013
Sospedra‐Alfonso, R., Melton, J.R., Merryfield, W.J., 2015. Effects of temperature and precipitation on snowpack variability in the Central Rocky Mountains as a function of elevation. Geophys. Res. Lett. 42(11), 4429–4438. https://doi.org/10.1002/2015GL063898
Sproles, E., Nolin, A., Rittger, K., Painter, T., 2013. Climate change impacts on maritime mountain snowpack in the Oregon Cascades. Hydrol. Earth Syst. Sci. 17, 2581–2597. https://doi.org/10.5194/hess-17-2581-2013
Stewart, I.T., Cayan, D.R., Dettinger, M.D., 2004. Changes in snowmelt runoff timing in western North America under a “business as usual” climate change scenario. Clim. Change. 62, 217–232. https://doi.org/10.1023/B:CLIM.0000013702.22656.e8
Stockton, C.W., Boggess, W.R., 1979. Geohydrological implications of climate change on water resource development. Technical Report. DTIC Document. Pp. 206. http://hdl.handle.net/10150/303803
Sultana, R., Choi, M., 2018. Sensitivity of Streamflow Response in the Snow-Dominated Sierra Nevada Watershed Using Projected CMIP5 Data. J. Hydrol. Eng. 23, 05018015. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001640
Sunyer, M., Madsen, H., Ang, P., 2012. A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmos. Res. 103, 119–128. https://doi.org/10.1016/j.atmosres.2011.06.011
Viviroli, D., Weingartner, R., 2004. The hydrological significance of mountains: from regional to global scale. Hydrol. Earth Syst. Sci. 8(6), 1016–1029. https://doi.org/10.7892/boris.134006
Whitfield, P.H., Shook, K.R., 2020. Changes to rainfall, snowfall, and runoff events during the autumn-winter transition in the Rocky Mountains of North America. Can. Water Resour. J. 45(1), 28–42. https://doi.org/10.1080/07011784.2019.1685910
Wilby, R.L., Hay, L.E., Gutowski, W.J., Arritt, R.W., Takle, E.S., Pan, Z., Leavesley, G.H. Clark, M.P., 2000. Hydrological responses to dynamically and statistically downscaled climate model output. Geophys. Res. Lett. 27(8), 1199–1202. https://doi.org/10.1029/1999GL006078
Wilby, R.L., Wigley, T., 1997. Downscaling general circulation model output: a review of methods and limitations. Prog. Phys. Geogr. 21, 530–548. https://doi.org/10.1177/030913339702100403
Williams, T.J., Pomeroy, J.W., Janowicz, J.R., Carey, S.K., Rasouli, K., Quinton, W.L., 2015. A radiative–conductive–convective approach to calculate thaw season ground surface temperatures for modelling frost table dynamics. Hydrol. Process. 29(18), 3954–3965. https://doi.org/10.1002/hyp.10573
Figures