References
Arnell, N.W., 1999. The effect of climate change on hydrological regimes
in Europe: a continental perspective. Glob. Environ. Change 9(1), 5–23.
https://doi.org/10.1016/S0959-3780(98)00015-6
Bales, R.C., Molotch, N.P., Painter, T.H., Dettinger, M.D., Rice, R.,
Dozier, J., 2006. Mountain hydrology of the western United States. Water
Resour. Res. 42. https://doi.org/10.1029/2005WR004387
Barros, V.R., Field, C.B., Dokke, D.J., Mastrandrea, M.D., Mach, K.J.,
Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C.,
Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R.,
White, L.L., 2014. Climate Change 2014: Impacts, Adaptation, and
Vulnerability. Part B: Regional Aspects. Contribution of Working Group
II to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge University Press. Pp. 190
Barry, R.G., 1992. Mountain climatology and past and potential future
climatic changes in mountain regions: A review. Mt. Res. Dev. 12, 71-86.
https://doi.org/10.2307/3673749
Bavay, M., Grünewald, T., Lehning, M., 2013. Response of snow cover and
runoff to climate change in high Alpine catchments of Eastern
Switzerland. Adv. Water Resour. 55, 4–16.
https://doi.org/10.1016/j.advwatres.2012.12.009
Beniston, M., 2003. Climatic change in mountain regions: a review of
possible impacts, in: Climate variability and change in high elevation
regions: past, present & future. Clim. Change 59, 5–31.
https://doi.org/10.1023/A:1024416227887
Beniston, M., Keller, F., Ko, B., Goyette, S., 2003. Estimates of snow
accumulation and volume in the Swiss Alps under changing climatic
conditions. Theor. Appl. Climatol. 76, 125–140.
https://doi.org/10.1007/s00704-003-0016-5
Berghuijs, W.R., Woods, R.A., Hrachowitz M., 2014. A precipitation shift
from snow towards rain leads to a decrease in streamflow. Nat. Clim.
Change 4(7), 583–586. https://doi.org/10.1038/nclimate2246
Bower, D., Hannah, D.M., McGregor, G.R., 2004. Techniques for assessing
the climatic sensitivity of river flow regimes. Hydrol. Process. 18,
2515–2543. https://doi.org/10.1002/hyp.1479
Bunbury, J., Gajewski, K., 2012. Temperatures of the past 2000 years
inferred from lake sediments, southwest Yukon Territory, Canada. Quat.
Res. 77, 355– 367. https://doi.org/10.1016/j.yqres.2012.01.002
Casola, J.H., Cuo, L., Livneh, B., Lettenmaier, D.P., Stoelinga, M.T.,
Mote, P.W., Wallace, J.M., 2009. Assessing the impacts of global warming
on snowpack in the Washington Cascades. J. Clim. 22, 2758–2772.
https://doi.org/10.1175/2008JCLI2612.1
Cayan, D.R., 1996. Interannual climate variability and snowpack in the
western United States. J. Clim. 9, 928–947.
https://doi.org/10.1175/1520-0442(1996)009<0928:ICVASI>2.0.CO;2
Colbeck, S.C., 1976. An analysis of water flow in dry snow. Water
Resour. Res. 12(3), 523–527. https://doi.org/10.1029/WR012i003p00523
Diaz, H.F., Grosjean, M., Graumlich, L., 2003. Climate variability and
change in high elevation regions: past, present and future. Clim.
Change. 59(1-2), 1–4. https://doi.org/10.1023/A:1024416227887
Fang, X., Pomeroy, J.W., 2020. Diagnosis of future changes in hydrology
for a Canadian Rockies headwater basin. Hydrol. Earth Syst. Sci., 24,
2731–2754. https://doi.org/10.5194/hess-24-2731-2020.
Fang, X., Pomeroy, J.W., DeBeer, C.M., Harder, P., Siemens, E., 2019.
Hydrometeorological data from Marmot Creek Research Basin, Canadian
Rockies. Earth Syst. Sci. Data 11(2), 455–471.
https://doi.org/10.5194/essd-11-455-2019
Fang, X., Pomeroy, J.W., Ellis, C.R., MacDonald, M.K., DeBeer, C.M.,
Brown, T., 2013. Multi-variable evaluation of hydrological model
predictions for a headwater basin in the Canadian Rocky Mountains.
Hydrol. Earth Syst. Sci. 17(4), 1635–1659.
https://doi.org/10.5194/hess-17-1635-2013
Fowler, H., Blenkinsop, S., Tebaldi, C., 2007. Linking climate change
modelling to impacts studies: recent advances in downscaling techniques
for hydrological modelling. Int. J. Climatol. 27, 1547– 1578.
https://doi.org/10.1002/joc.1556
Fyfe, J.C., Flato, G.M., 1999. Enhanced climate change and its detection
over the Rocky Mountains. J. Clim. 12, 230–243.
https://doi.org/10.1175/1520-0442(1999)012<0230:ECCAID>2.0.CO;2
Graversen, R.G., Mauritsen, T., Tjernstrom, M., Kallen, E., Svensson,
G., 2008. Vertical structure of recent Arctic warming. Nature 451,
53–56. https://doi.org/10.1038/nature06502
Harder, P., Pomeroy, J.W., Westbrook, C.J., 2015. Hydrological
resilience of a Canadian Rockies headwaters basin subject to changing
climate, extreme weather, and forest management. Hydrol. Process. 29,
3905–3924. https://doi.org/10.1002/hyp.10596
Hay, L.E., Wilby, R.L., Leavesley, G.H., 2000. A comparison of delta
change and downscaled GCM scenarios for three mountainous basins in the
United States. J. Am. Water Resour. Assoc. 36, 387–397.
https://doi.org/10.1111/j.1752-1688.2000.tb04276.x
Jennings, K.S., Molotch, N.P., 2019. The sensitivity of modeled snow
accumulation and melt to precipitation phase methods across a climatic
gradient, Hydrol. Earth Syst. Sci. 3765–3786.
https://doi.org/10.5194/hess-23-3765-2019.
Jasper, K., Calanca, P., Gyalistras, D., Fuhrer, J., 2004. Differential
impacts of climate change on the hydrology of two alpine river basins.
Clim. Res. 26, 113–129. https://doi.org/10.3354/cr026113
Kawase, H., Yoshikane, T., Hara, M., Kimura, F., Yasunari, T., Ailikun,
B., Ueda, H., Inoue, T., 2009. Intermodel variability of future changes
in the Baiu rainband estimated by the pseudo global warming downscaling
method. J. Geophys. Res. Atmos. 114.
https://doi.org/10.1029/2009JD011803.
Kay, A., Davies, H., Bell, V., Jones, R., 2009. Comparison of
uncertainty sources for climate change impacts: flood frequency in
England. Clim. Change 92, 41–63.
https://doi.org/10.1007/s10584-008-9471-4
Lettenmaier, D. P., and T. Y. Gan (1990), Hydrologic sensitivities of
the Sacramento‐San Joaquin River basin, California, to global warming.
Water Resour. Res. 26(1), 69-86. https://doi.org/10.1029/WR026i001p00069
López-Moreno, J., Boike, J., Sanchez-Lorenzo, A., Pomeroy, J., 2016.
Impact of climate warming on snow processes in Ny-Alesund, a polar
maritime site at Svalbard. Glob. Planet. Change 146, 10–21.
https://doi.org/10.1016/j.gloplacha.2016.09.006
López-Moreno, J., Pomeroy, J., Revuelto, J., Vicente-Serrano, S., 2013.
Response of snow processes to climate change: spatial variability in a
small basin in the Spanish Pyrenees. Hydrol. Process. 27, 2637–2650.
https://doi.org/10.1002/hyp.9408
López-Moreno, J.I., Revuelto, J., Gilaberte, M., Moran-Tejeda, E., Pons,
M., Jover, E., Esteban, P., Garca, C., Pomeroy, J., 2014. The effect of
slope aspect on the response of snowpack to climate warming in the
Pyrenees. Theor. Appl. Climatol. 117, 207–219.
https://doi.org/10.1007/s00704-013-0991-0
López-Moreno, J.I., Pomeroy, J.W., Alonso-González, E., Morán-Tejeda,
E., Revuelto, J., 2020. Decoupling of warming mountain snowpacks from
hydrological regimes. Environ. Res. Lett. 15(11), 114006.
https://doi.org/10.1088/1748-9326/abb55f
Luo, Y., Gerten, D., Le Maire, G., Parton, W. J., Weng, E., Zhou, X.,
Keough, C., Beier, C., Ciais, P., Cramer, W., 2008. Modeled interactive
effects of precipitation, temperature, and [CO2] on
ecosystem carbon and water dynamics in different climatic zones. Glob.
Chang. Biol., 14(9), 1986–1999.
https://doi.org/10.1111/j.1365-2486.2008.01629.x
MacDonald, R. J., Byrne, J. M., Kienzle, S. W., Larson, R.P., 2010.
Assessing the Potential Impacts of Climate Change on Mountain Snowpack
in the St. Mary River Watershed, Montana. J. Hydrometeorol. 12,
262–273. https://doi.org/10.1175/2010JHM1294.1
Malmqvist, B., Rundle, S., 2002. Threats to the running water ecosystems
of the world. Environ. Conserv. 29, 134–153.
https://doi.org/10.1017/S0376892902000097
Marks, D., Kimball, J., Tingey, D., Link T., 1998. The sensitivity of
snowmelt processes to climate conditions and forest cover during
rain-on-snow: a case study of the 1996 Pacific Northwest flood. Hydrol.
Process. 12, 1569–1587.
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1569::AID-HYP682>3.0.CO;2-L
Massey Jr., F.J., 1951. The Kolmogorov-Smirnov test for goodness of fit.
J. Am. Stat. Assoc. 46, 68–78.
https://doi.org/10.1080/01621459.1951.10500769
McCabe, G.J., Clark, M.P., 2005. Trends and variability in snowmelt
runoff in the western United States. J. Hydrometeorol. 6, 476–482.
https://doi.org/10.1175/JHM428.1
Mearns, L., Gutowski, W., Jones, R., Leung, L., McGinnis, S., Nunes, A.,
Qian, Y., 2007. The North American regional climate change assessment
program dataset, National Center for Atmospheric Research Earth System
Grid Data Portal, Boulder, CO. https://doi.org/10.5065/D6RN35ST, data
accessed Sept 2013.
Meybeck, M., Green, P., Vorosmarty, C., 2001. A new typology for
mountains and other relief classes: An application to global continental
water resources and population distribution. Mt. Res. Dev. 21, 34–45.
https://doi.org/10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2
Minder, J. R., 2010. The sensitivity of mountain snowpack accumulation
to climate warming. J. Clim. 23(10), 2634–2650.
https://doi.org/10.1175/2009JCLI3263.1
Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Van
Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., et al.,
2010. The next generation of scenarios for climate change research and
assessment. Nature 463, 747–756. https://doi.org/10.1038/nature08823
Mote, P.W., Hamlet, A.F., Clark, M.P. Lettenmaier, D.P., 2005. Declining
mountain snowpack in western North America. Bull. Am. Meteorol. Soc.
86(1), 39–50. https://doi.org/10.1175/BAMS-86-1-39
Nayak, A., 2008. The effect of climate change on the hydrology of a
mountainous catchment in the western United States: A case study at
Reynolds Creek, Idaho. Utah State University. Pp. 194.
https://digitalcommons.usu.edu/etd/82
Nayak, A., Marks, D., Chandler, D., Seyfried, M., 2010. Long-term snow,
climate, and streamflow trends at the Reynolds Creek Experimental
watershed, Owyhee Mountains, Idaho, United States. Water Resour. Res.
46. https://doi.org/10.1029/2008WR007525
Pederson, G.T., Gray, S.T., Ault, T.R., Marsh, W., Fagre, D.B., Bunn,
A.G., Woodhouse, C.A., Graumlich, L.J., 2011. Climatic Controls on the
Snowmelt Hydrology of the Northern Rocky Mountains. J. Clim. 24,
1666–1687. https://doi.org/10.1175/2010JCLI3729.1
Pomeroy, J., Gray, D., Brown, T., Hedstrom, N., Quinton, W., Granger,
R., Carey, S., 2007. The cold regions hydrological model: a platform for
basing process representation and model structure on physical evidence.
Hydrol. Process. 21, 2650–2667. https://doi.org/10.1002/hyp.6787
Pomeroy, J.W., Fang, X., Rasouli, K., 2015. Sensitivity of snow
processes to warming in the Canadian Rockies. In Proceedings, 72nd
Eastern Snow Conference, 9-11 June 2015, Sherbrooke, Québec, Canada,
22–33.
Pomeroy, J.W., Fang, X., Marks, D.G., 2016. The cold rain‐on‐snow event
of June 2013 in the Canadian Rockies – Characteristics and diagnosis.
Hydrological Processes, 30(17), 2899-2914.
https://doi.org/10.1002/hyp.10905
Poulin, A., Brissette, F., Leconte, R., Arsenault, R., Malo, J.-S. 2011.
Uncertainty of hydrological modelling in climate change impact studies
in a Canadian, snow-dominated river basin. J. Hydrol. 409, 626–636.
https://doi.org/10.1016/j.jhydrol.2011.08.057
Prowse, T.D., Wrona, F.J., Reist, J.D., Gibson, J.J., Hobbie, J.E.,
Lévesque, L.M., Vincent, W.F., 2006. Climate change effects on
hydroecology of Arctic freshwater ecosystems. AMBIO: A J. Hum. Environ.
35(7), 347–359.
https://doi.org/10.1579/0044-7447(2006)35[347:CCEOHO]2.0.CO;2
Rasouli, K., 2017. Sensitivity Analysis of Mountain Hydrology to
Changing Climate. Ph.D. thesis. University of Saskatchewan, Saskatoon,
Canada. Pp. 251. https://harvest.usask.ca/handle/10388/7799
Rasouli, K., Pomeroy, J.W., Janowicz, J.R., Carey, S.K., Williams, T.J.,
2014. Hydrological sensitivity of a northern mountain basin to climate
change. Hydrol. Process. 28, 4191–4208.
https://doi.org/10.1002/hyp.10244
Rasouli, K., Pomeroy, J.W., Marks, D.G., 2015. Snowpack sensitivity to
perturbed climate in a cool mid-latitude mountain catchment. Hydrol.
Process. 29, 3925–3940. https://doi.org/10.1002/hyp.10587
Rasouli, K., Pomeroy J.W., and Whitfield P.H., 2019a. Hydrological
responses of headwater basins to monthly perturbed climate in the North
American Cordillera. J. Hydrometeorol. 20, 863–882.
https://doi.org/10.1175/JHM-D-18-0166.1
Rasouli, K., Pomeroy, J.W., and Whitfield, P.H., 2019b. Are the effects
of vegetation and soil changes as important as climate change impacts on
hydrological processes? Hydrol. Earth Syst. Sci. 23, 4933–4954.
https://doi.org/10.5194/hess-23-4933-2019
Rasouli, K., Pomeroy, J.W., Janowicz, J.R., Williams, T.J. and Carey,
S.K., 2019c. A long-term hydrometeorological dataset (1993–2014) of a
northern mountain basin: Wolf Creek Research Basin, Yukon Territory,
Canada. Earth Syst. Sci. Data 11(1), 89–100.
https://doi.org/10.5194/essd-11-89-2019
Rasouli, K., Scharold, K., Mahmood, T.H., Glenn, N.F., Marks, D., 2020.
Linking hydrological variations at local scales to regional climate
teleconnection patterns. Hydrol. Process. 34(26), 5624–5641.
https://doi.org/10.1002/hyp.13982
Reba, M.L., Marks, D., Seyfried, M., Winstral, A., Kumar, M.,
Flerchinger, G., 2011. A long‐term data set for hydrologic modeling in a
snow‐dominated mountain catchment. Water Resour. Res. 47(7).
https://doi.org/10.1029/2010WR010030
Roche, J.W., Bales, R.C., Rice, R., Marks, D.G., 2018. Management
Implications of Snowpack Sensitivity to Temperature and Atmospheric
Moisture Changes in Yosemite National Park, CA. J. Am. Water Resour.
Assoc. 54, 724–741. https://doi.org/10.1111/1752-1688.12647
Semadeni-Davies, A., Hernebring, C., Svensson, G., Gustafsson, L.G.,
2008. The impacts of climate change and urbanisation on drainage in
Helsingborg, Sweden: Combined sewer system. J. Hydrol. 350, 100–113.
https://doi.org/10.1016/j.jhydrol.2007.05.028
Semmens, K., Ramage, J., 2013. Recent changes in spring snowmelt timing
in the Yukon River basin detected by passive microwave satellite data.
The Cryosphere 7, 905–916. https://doi.org/10.5194/tc-7-905-2013
Sospedra‐Alfonso, R., Melton, J.R., Merryfield, W.J., 2015. Effects of
temperature and precipitation on snowpack variability in the Central
Rocky Mountains as a function of elevation. Geophys. Res. Lett. 42(11),
4429–4438. https://doi.org/10.1002/2015GL063898
Sproles, E., Nolin, A., Rittger, K., Painter, T., 2013. Climate change
impacts on maritime mountain snowpack in the Oregon Cascades. Hydrol.
Earth Syst. Sci. 17, 2581–2597.
https://doi.org/10.5194/hess-17-2581-2013
Stewart, I.T., Cayan, D.R., Dettinger, M.D., 2004. Changes in snowmelt
runoff timing in western North America under a “business as usual”
climate change scenario. Clim. Change. 62, 217–232.
https://doi.org/10.1023/B:CLIM.0000013702.22656.e8
Stockton, C.W., Boggess, W.R., 1979. Geohydrological implications of
climate change on water resource development. Technical Report. DTIC
Document. Pp. 206. http://hdl.handle.net/10150/303803
Sultana, R., Choi, M., 2018. Sensitivity of Streamflow Response in the
Snow-Dominated Sierra Nevada Watershed Using Projected CMIP5 Data. J.
Hydrol. Eng. 23, 05018015.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001640
Sunyer, M., Madsen, H., Ang, P., 2012. A comparison of different
regional climate models and statistical downscaling methods for extreme
rainfall estimation under climate change. Atmos. Res. 103, 119–128.
https://doi.org/10.1016/j.atmosres.2011.06.011
Viviroli, D., Weingartner, R., 2004. The hydrological significance of
mountains: from regional to global scale. Hydrol. Earth Syst. Sci. 8(6),
1016–1029. https://doi.org/10.7892/boris.134006
Whitfield, P.H., Shook, K.R., 2020. Changes to rainfall, snowfall, and
runoff events during the autumn-winter transition in the Rocky Mountains
of North America. Can. Water Resour. J. 45(1), 28–42.
https://doi.org/10.1080/07011784.2019.1685910
Wilby, R.L., Hay, L.E., Gutowski, W.J., Arritt, R.W., Takle, E.S., Pan,
Z., Leavesley, G.H. Clark, M.P., 2000. Hydrological responses to
dynamically and statistically downscaled climate model output. Geophys.
Res. Lett. 27(8), 1199–1202. https://doi.org/10.1029/1999GL006078
Wilby, R.L., Wigley, T., 1997. Downscaling general circulation model
output: a review of methods and limitations. Prog. Phys. Geogr. 21,
530–548. https://doi.org/10.1177/030913339702100403
Williams, T.J., Pomeroy, J.W., Janowicz, J.R., Carey, S.K., Rasouli, K.,
Quinton, W.L., 2015. A radiative–conductive–convective approach to
calculate thaw season ground surface temperatures for modelling frost
table dynamics. Hydrol. Process. 29(18), 3954–3965.
https://doi.org/10.1002/hyp.10573
Figures