En los gráficos se observa la etapa final del movimiento, en la que no ya no actuaba ningún tipo de aceleración, razón por la cual se observa una recta correspondiente a las velocidades límite v1 y v2, despejadas a través de un ajuste lineal:
\(v_1=\left(15,505\ \pm0,071\right)\ \frac{cm}{s}\)
\(v_2=\left(16,490\ \pm0,045\right)\ \frac{cm}{s}\)
Se observa que, debido a la Ec. 1, la velocidad límite para m1 (la masa más liviana y chica) es más baja que para m2 aun cuando su densidad es mayor.
Finalmente, se obtuvieron dos valores para el coeficiente de viscosidad al despejarlo de la Ec. 1 y propagando errores según la Ec. 2:\(\Delta\eta^2=\left(\frac{2Rg\left(\delta_c-\delta_l\right)\Delta r}{9v_f}\right)^2+\left(\frac{2R^2\left(\delta_c-\delta_l\right)\Delta g}{9v_f}\right)^2+\left(\frac{2R^2g\Delta\delta_c}{9v_f}\right)^2+\left(\frac{2R^2g\Delta\delta_l}{9v_f}\right)^2+\left(\frac{2R^2g\left(\delta_c-\delta_l\right)\Delta v_f}{9v_f^2}\right)^2\) Ec.2
Siendo g = (979,68520 ± 0,00003) cm/s2 y δl =(1,10 ± 0,02) g/ml se obtiene:
\(\eta_1=\left(2,29\ \pm1,19\right)\frac{g}{s\cdot cm}\)