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Abstract12

The misalignment of the observation and predicted waveforms in regional moment ten-13

sor inversion is mainly due to seismic models’ incomplete representation of the Earth’s14

heterogeneities. Current moment tensor inversion techniques, allowing station-specific15

time shifts to account for the model error, are computationally expensive. Here, we pro-16

pose a lightweight method to jointly invert moment-tensor parameters and unknown station-17

specific time shifts utilizing the modern functionalities in deep learning frameworks. A18

L2
2 misfit function between predicted synthetic and time-shifted observed seismograms19

is defined in the spectral domain, which is differentiable to all unknowns. The inverse20

problem is solved by minimizing the misfit function with a gradient descent algorithm.21

The method’s feasibility, robustness, and scalability are demonstrated on earthquakes22

in the Long Valley Caldera, California. This work presents an example of fresh oppor-23

tunities to apply advanced computational infrastructures developed in deep learning to24

geophysical problems.25

Plain Language Summary26

Understanding the physics of a seismic source is critical to discriminating its na-27

ture, which can be of tectonic or volcanic origins or artificial explosions. However, the28

major challenge in practice is the incomplete knowledge of the Earth’s structures to ex-29

plain observed seismological records adequately. In many cases, the imperfect knowledge30

of the Earth’s structures can be well approximated by allowing the prediction to be time-31

shifted to match the observation waveform. But, the shifting amounts are unknown, which32

introduces a new set of unknowns to solve apart from the parameterization of the seis-33

mic source. Here, we utilize recent advancements in scientific computation from a deep34

learning toolbox to develop an effective solver for the moment tensor inversion problem.35

We demonstrate that our method can robustly yield the seismic source solution with much36

less computational effort than existing methods. This presents an exciting opportunity37

to tackle geophysical problems with computationally powerful tools developed in other38

communities.39

1 Introduction40

A seismic moment tensor (MT) is a mathematical representation of a seismic source
under the point-source assumption in space and time for small-to-moderate earthquakes
when using relatively long-period waveforms (Aki & Richards, 2002). A full MT is a 3×3
matrix, but for most underground earthquakes, the net torque is negligible, and the ma-
trix is symmetric with six unknown elements (e.g., Jost & Herrmann, 1989; Stein & Wyses-
sion, 2003). In this study, we use the north-east-down coordinate system for an MT, de-
noted as,

m = [mk; k = 1 . . . 6] = [mnn,mee,mdd,mne,mnd,med] ∈ R6. (1)

In MT inversion, a set of Green functions, or Earth’s structure responses, Gk(ξ,x, t),
is computed in advance for six orthogonal bases of the MT space. We assume the source,
ξ, and receiver x locations are known in the scope of this study. Then, a tensor (linear)
multiplication predicts the observed waveforms,

d(t) = m ·G(ξ,x, t) =
∑
k

mkG
k. (2)

G ∈ Rnr×nc×6×nt is a forth-order tensor and d ∈ Rnr×nc×nt is a third-order tensor,
where nr, nc and nt are number of receivers, number of components in each receiver and
number of samples, respectively. The MT solution, m∗, can be approximated by its least-
square estimate of the linear system,

m∗ = d ·GT · (G ·GT )−1. (3)
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The superscript T denotes the matrix transposition.41

However, in practice, the numerical predictions and observed waveforms are often
not aligned (Figs. 1A, B), and the misalignment could severely affect the MT solution
estimate (Zhu & Helmberger, 1996; Zhao & Helmberger, 1994). Let τ be an unknown
station-specific time shift to align the observation to the prediction, and Equation 2 can
be re-written as,

d(t− τ) = m ·G(ξ,x, t). (4)

The first source of misalignment is due to the unknown origin time of the inverted seis-42

mic source. This leads to an imprecise window of the observed waveforms to be matched43

with the synthetic waveforms. The imprecise origin time lead to a baseline time shift ap-44

plied to all stations’ waveforms.45

Secondly, the lack of complete knowledge of the Earth’s structures results in path-46

specific time shifts (Zhu & Helmberger, 1996; Zhao & Helmberger, 1994; Zhu & Ben-Zion,47

2013; Silwal & Tape, 2016). Indeed, a 1D velocity model is often used in regional sur-48

face wave inversion. If the model is faster or slower than the real Earth along the path49

toward a receiver, the observed waveform needs to be shifted backward or forward to ac-50

count for the structural error. The presence of unknown station-specific time shifts makes51

the MT inversion strongly nonlinear, whose existing computational methods are com-52

putationally expensive.53

Figure 1. Motivating problem for joint inversion of moment tensor (MT) parameters, m, and

unknown station-specific time shifts, τ . (A) The waveforms are Green functions corresponding

to elementary moment tensors, Mi, i = 1, . . . , 6. (B) The typical mismatch between observed

and predicted waveforms. The observed waveform, dobs, needs to be shifted by an unknown time

shift, τ , to match the predicted waveform, dpred. (C) Schematic demonstration of a global min-

imum in the joint parameter space of MT parameters and station-specific time shifts, m and τ .

Horizontal and vertical colored lines represent two widely-used approaches for MT inversion with

unknown time shifts. The vertical lines sketch the idea behind the cut-and-paste method (Zhao

& Helmberger, 1994; Zhu & Helmberger, 1996), while the horizontal lines sketch the idea behind

the time domain moment tensor method (D. Dreger et al., 2000). Here we consider full MT so-

lutions, so m ∈ R6, and one time shift for each station, so τ ∈ Rnr , where nr is the number of

seismic stations.
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Indeed, the cut-and-paste (CAP) algorithm (Zhu & Helmberger, 1996; Zhao & Helm-54

berger, 1994) and its variation (Zhu & Ben-Zion, 2013) are widely used for regional full-55

waveform MT inversion where time-shifts are allowed to account for model errors. In this56

algorithm, a misfit value is computed for an imputed MT solution assuming the opti-57

mal alignment between predicted and observed waveforms can be determined by cross-58

correlation (depicted by vertical blue lines in Fig. 1c). Then, the best MT solution is59

grid-searched as the smallest misfit over the entire parameter MT space, which often re-60

sults in a costly computational burden. For example, Silwal and Tape (2016) and Alvizuri61

et al. (2018) recently implemented this approach for full MT inversion using a uniform62

parameterization of MT space (Tape & Tape, 2015). The grid search was implemented63

on a cluster due to the computational scale (Alvizuri et al., 2018; Thurin et al., 2022)64

given that 20 million trials were evaluated for each earthquake.65

Alternatively, an MT solution can be solved efficiently using least-square estima-66

tion given an imputed set of station-specific time shifts (depicted by horizontal orange67

lines in Fig. 1c). After marching the grid of all possible combinations of station-specific68

time shifts, the optimal MT solution corresponds to the minimum misfit (e.g., D. Dreger69

et al., 2000). More recently, Hejrani et al. (2017) assumed a single time shift for all sta-70

tions to account for possible errors in the cataloged centroid time. The grid search for71

station-specific time shifts is also costly due to the exponentially larger number of com-72

binations to explore, especially when the analysis involves a larger number (i.e., more73

than 10) of stations.74

The ensemble sampling method in the Bayesian framework in the joint space of MT75

parameters and unknown time shifts (Viltres et al., 2022; Hu et al., 2023) is a relatively76

independent approach of the above-mentioned approaches. This approach has recently77

become possible thanks to the advance of powerful probabilistic sampling methods (Goodman78

& Weare, 2010; Roberts & Rosenthal, 2001; Del Moral et al., 2006). It narrows the tar-79

geted sampling near the optimal solution, which provides a useful estimate of the param-80

eters’ uncertainty. However, the sampling approach suffers a severe scalability problem81

because the sampler becomes inefficient given more seismic stations. If nr stations are82

used simultaneously in the inversion and a time shift is assumed for each station, the di-83

mension of the unknown space, 6+nr, grows, while the MT parameters occupy just a84

small subspace.85

In this study, we propose a lightweight method in the optimization framework to86

tackle the nonlinear inverse problem. First, we represent the misfit function between the87

prediction and time-shifted observation in the spectral domain, where the misfit is dif-88

ferentiable to all dependent parameters. Consequently, the misfit function can be min-89

imized using a gradient descent algorithm to obtain an optimal solution. The algorithm90

is implemented in TensorFlow, a popular deep-learning framework, to utilize its advanced91

auto-differentiation functionality and computational performance. The method’s feasi-92

bility, robustness, and scalability are bench-marked against real data from several Long93

Valley Caldera volcanic events.94

2 Methodology95

2.1 Data preparation and pre-processing96

Seismic waveforms and station metadata were downloaded from the North Cali-97

fornia Earthquake Data Center (NCEDC) using their web service. The retrieved wave-98

forms were corrected for instrumental responses for velocity seismograms, then filtered99

between 20–50 s, with an acausal, 4-corner Butterworth bandpass filter, and down-sampled100

to 1 sample per second. We visually inspected the pre-processed waveforms and elim-101

inated those having glitches or exhibiting anomalously high noise levels. They were then102

arranged into a 3-dimensional tensor in Rnr×nc×nt where nr, nc = 3, and nt are the103

–4–



manuscript submitted to Geophysical Research Letters

numbers of receivers, channels, and time samples. In this study, all waveforms are 250104

s long (i.e., nt = 250) starting from the origin time reported in the NCEDC catalog.105

2.2 Calculation of Green’s functions106

Synthetic velocity seismograms of an impulse source corresponding to six orthog-107

onal MT bases were generated using the frequency-wave number method in the Com-108

puter Program in Seismology package (Herrmann, 2013). We used the 1D South Cal-109

ifornia model (D. S. Dreger & Helmberger, 1990) like previous studies of earthquakes in110

the region (D. Dreger et al., 2000; Minson & Dreger, 2008). The calculated seismograms111

are filtered and re-sampled in the same way as the observed data and arranged into a112

4-dimensional tensor G ∈ Rns×nc×ne×nt and ne = 6 is the number of MT orthogonal113

bases.114

2.3 Differentiable misfit function and optimized inversion115

Without losing the generality, we consider the inverse problem with an unknown
time shift, τ , for a single observed seismogram. An L2

2 misfit function between predicted
and shifted (or translated) observed waveforms is defined as,

J(m, τ) =

∫
t

|m ·G(t)− d(t− τ)|2 dt. (5)

The integration over time is a notional representation of the summation over discrete dig-116

ital waveform samples.117

A time-shifted function in the time domain is a multiplication in the frequency do-
main, f , via a Fourier transform,

F{d(t− τ)}(f) = F{d(t)}(f) exp(−iωτ), (6)

where ω = 2πf . The Fourier transform of the integral kernel in Equation 5 becomes,

F{m ·G(t)− d(t− τ)}(f) = F{m ·G(t)}(f)−F{d(t)}(f) exp(−iωτ). (7)

For convenience, we denote Ĝ := F{G(t)}(f), d̂ := F{d(t)}(f). Because the L2
2 norms

in spectral and temporal domains equal (i.e., Parseval’s theorem — Gradshteyn et al.,
2000), the misfit function, Equation 5, can be re-written in the spectral domain as,

J(m, τ) =

∫
f

|m · Ĝ− d̂ exp(−iωτ)|2 df. (8)

In Equation 8, | · | is the absolute value of the complex spectra.118

The cost function, J(m, τ), defined in Equation 8 is continuous and differentiable
to all dependent variables, m and τ , indeed,

∂J

∂m
= 2

∫
f

(Ĝr · D̂r + Ĝi · D̂i) df, (9)

and
∂J

∂τ
= 2ω

∫
f

(D̂r · (d̂i cosωτ − d̂r sinωτ) + D̂i · (d̂i cosωτ + d̂r sinωτ)) df, (10)

where

Dr = (m · Ĝr − d̂r cosωτ − d̂i sinωτ)

Di = (m · Ĝi − d̂i cosωτ + d̂r sinωτ).

D denotes the difference of the spectra of the observed and predicted waveforms in the119

integral kernel in Equation 8. Subscripts i, r denote the real and imaginary components120
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of the Fourier transforms of Green’s tensor and observed data. With the differentiable121

misfit function, a gradient descent algorithm can be used to derive the optimum corre-122

sponding to the inverse solution in the joint space of MT parameters and time shift.123

In the remainder of this work, we assume a single time shift for all three compo-124

nents of one station to demonstrate the method’s feasibility. By assuming so, we ignore125

the Earth’s structure anisotropy, which could result in different time shifts in surface wave126

arrivals in radial and tangential seismograms. The time shifts are proxy to account for127

isotropic heterogeneity in 3D Earth structures when approximated by 1D velocity mod-128

els (Zhu & Helmberger, 1996; Zhao & Helmberger, 1994; Zhu & Ben-Zion, 2013). Thus,129

our inversion has nr time shifts and 6 MT parameters as unknowns.130

2.4 Algorithm implementation131

Our implementation utilizes the auto differentiation functionality available on Ten-132

sorFlow (www.tensorflow.org), a popular deep learning framework. The partial deriva-133

tives, Equations 9 and 10, can be automatically calculated by back-propagating the for-134

ward definition of the cost function, Equation 8. The framework also offers well-tested,135

high-performance gradient descent algorithms, such as Adam (Kingma & Ba, 2014). In136

the present implementation, we use the Adam optimizer as a default option due to its137

empirical performance. As demonstrated later, the implementation enables acceleration138

on a graphic processing unit (GPU), resulting in excellent scalability to data size with-139

out a negligible increase in compute time. As we utilize the core functions of a modern140

Deep Learning framework, the inversion algorithm can also be implemented in other frame-141

works with similar functionalities, such as PyTouch, as of the developers’ preference.142

Because the event’s magnitude is generally unknown, the amplitudes of observed143

seismograms and pre-computed Green’s functions can be in different dynamic ranges.144

This is an inherent challenge for iterative algorithms because the initial solution must145

be relatively close to the optimum to guarantee the algorithm’s convergence. Here, we146

normalize the observation and Green tensor with their absolute medians to mitigate the147

magnitude scaling difference. The actual magnitude of the MT solution will be restored148

afterward using the ratio between the median values. Empirically, we found a learning149

rate of 0.2 (or others in the same magnitude order) performs well for the examples pre-150

sented in this paper. The learning rate defines the relative step length of the descend-151

ing iterations.152

3 Results153

3.1 Mw 4.9, 1997/11/22 17:20:35, Long Valley Caldera volcanic event154

Firstly, we analyze data from the Long Valley Caldera event (Mw 4.9, 1997/11/22155

17:20:35) to demonstrate the feasibility and robustness of the method proposed in this156

study. This event, often referred to as LV2, was in a sequence of large events during the157

volcanic unrest from 1997–1999 (D. Dreger et al., 2000; Minson & Dreger, 2008; Pha.m158

& Tkalčić, 2021). We used the hypo-center reported in the NCEDC catalog with a depth159

of 5.1 km to calculate the synthetic Green tensor before the inversion. All 15 broadband160

seismic stations of the Berkeley Digital Seismograph Network found within the search-161

ing box (Fig. 2A) were used in this experiment.162

Fig. 2 summarises the inversion result. As shown in Fig. 2C, the cost function de-163

scends quickly in less than 100 epochs (i.e. iteration steps) before stabilizing in the sub-164

sequent epochs. The optimal solution of MT parameters and station-specific time shifts165

was selected to yield the smallest cost in the iteration chain. The optimal MT solution166

has dominant 52% double couple (DC), large isotropic (ISO: 33%), and compensated lin-167
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Figure 2. Summary of MT solution for the Mw 4.9, 1997/11/22 17:20:35, Long Valley

Caldera volcanic event, referred to as LV2 in Minson and Dreger (2008) and Pha.m and Tkalčić

(2021). (A) Location map of the event and monitoring stations. The beach ball shows the devi-

atoric moment tensor solution of this study. (B) The source type of MT solution is denoted on a

lune diagram of source types (Tape & Tape, 2012). (C) Evolution of descending cost (Equation

8) as a function of epochs. The text denotes the used Earth model (D. S. Dreger & Helmberger,

1990), earthquake depth from North California Earthquake Data Center, the solution’s moment

magnitude and its standard decomposition into isotropic (ISO), double couple (DC), and com-

pensated linear vector dipole (CLVD) components. (D) Observed data and best-predicted wave-

forms are shown in black and red, respectively. The right panel shows the output station-specific

time shifts.

–7–



manuscript submitted to Geophysical Research Letters

ear dipole (CLVD: 15%) components (Fig. 2B). Predicted waveforms corresponding to168

the solution exhibit a good fit with observed waveforms after time-shifted (Fig. 2D).169
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Figure 3. Demonstration of solution robustness for random selections of seismic stations. (A)

Probability of selecting a station as a function of epicentral distance to the earthquake location.

(b) Cost functions descend as a function of epochs for multiple runs. (c) Optimal MT solutions of

the runs, color-coded as a number of stations involved. (d). ISO/CLVD/DC component decom-

position corresponds to the optimal solutions.

To further examine the robustness of the recovered solution, we repeat the MT in-170

version for multiple subsets of 5, 7, 9, 11, and 13 stations drawn from the original set171

of 15. The inversion was repeated seven times for each of the subset sizes. In each run,172

a seismic station was selected randomly until the subset size was reached. The proba-173

bility of picking a station is inversely proportional to its distance to the earthquake source174

(Fig. 3A), or in other words, a station closer to the source is more likely to be picked.175

All inversions ran for 300 epochs, although all cost functions descended to convergence176

within about 200 epochs (Figs. 3B). The collection of results shows the similarity element-177

wise in all optimal MT solutions, given that the largest variability was encountered when178

7 stations were used (Fig. 3C). Despite the variation, the standard MT decomposition179

reveals a consistent CLVD component in the solution at around 18%.180

The presence of the significant CLVD component in the MT solution of this event181

(Figs. 2B) confirms the findings by Pha.m and Tkalčić (2021). It is worth noting that182

Pha.m and Tkalčić (2021) and this study both considered the Earth’s structural error de-183

spite the differences in the approaches. The previous study considered the influence of184

the 1D velocity model’s error by simulating synthetic waveforms and their covariance185

matrices. This study, however, utilizes station-specific time shifts as a proxy to tolerate186

Earth model error, which largely results in waveform mismatch. The agreement of a sig-187

nificant CLVD component for this event, which was overlooked in the past (Pha.m & Tkalčić,188
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2021), revealed by two different approaches, corroborates the importance of properly treat-189

ing the Earth model’s error in MT inversion procedures.190

3.2 Robustness of recovered station-specific time shifts191

While the previous subsection features the robustness of resolving MT parameters,192

this section demonstrates the robustness of the recovered time shifts. We retrieve data193

from six events in Long Valley Caldera’s 1997–1999 unrest sequence to do so. A set of194

15 stations recording the events are used for the inversion to compare relative variation195

in time shifts (Fig. 4a).196

Fig. 4 summarises the consistency in the recovered time shifts. The selected events197

show a wide variety of source types. Four events with significant isotropic components198

are likely related to volcanic activities, while the other two with dominant DC compo-199

nents are possibly of pure tectonic nature (Figs. 4A and B). Despite the diversity in source200

types, the recovered station-specific time shifts are consistent among all six events (Fig.201

4c). The anomalous time shift of station HOPS in event 1997/11/30 21:17:05 is due to202

noisy data waveforms.203

Overall, the Southern California model (D. S. Dreger & Helmberger, 1990) provides204

a good 1D Earth model for the LVC events as needed time shifts for most stations are205

consistently small. Nevertheless, it appears consistently slower along paths to close sta-206

tions, such as KCC or SAO, but slightly faster along the paths to more distant stations,207

such as PKD and WDC.208
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Figure 4. Demonstration of robustness in recovered station-specific time shifts. (A) A map

of six events in and near the Long Valley Caldera region and 15 stations was used in the experi-

ment. (B) Recovered source types of the events plotted on a lune diagram (Tape & Tape, 2012).

(C) Relative station-specific time shifts recovered for the six events.

3.3 Performance scalability with number of stations209

On another important aspect, we show the proposed method’s excellent scalabil-210

ity to tens of seismic stations. This experiment utilizes 49 stations recording the Mw xx211

2021/07/09 01:46:00 event in the LVC region (Fig. 5A). The MT inversions were repeated212

for data from increasing numbers of stations with a step of two. To compare the run-213

ning time, we terminated each run after 200 epochs without considering the actual con-214

vergence of the MT solutions (Fig. 5B).215
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When running on a single Central Processing Unit (CPU) of a compute node on216

the National Computing Infrastructure’s Gadi cluster, the compute time only doubled217

when the input size was increased by 10 times, exhibiting the CPU code’s strong sub-218

linear scalability. The computing time is even faster on the cluster’s Graphical Process-219

ing Unit (GPU). Yet more significantly, the input size increase does not apparently af-220

fect compute time. This starkly contrasts with existing methods, as discussed in the In-221

troduction, whose efficacy depends greatly on the input sizes.222
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Figure 5. Demonstration of excellent computational scalability. (A) Location map of event

and seismic stations recording event Mw xx 2021/07/09 01:46:00. (B) Colored lines show the

computing times on a Central Processing Unit (CPU) and a Graphical Processing Unit (GPU)

of the National Computing Infrastructure’s Gadi cluster as functions of the number of stations

involved in the inversion.

4 Discussion and Conclusion223

In the previous section, we demonstrated a lightweight method’s feasibility, robust-224

ness, and scalability to invert MT parameters and station-specific time shifts jointly. Here225

we discuss some aspects of the proposed algorithm, which can be further explored in fu-226

ture research.227
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In the current implementation, the source location is yet to be considered unknown228

to be constrained by data because the waveform derivatives with respect to source lo-229

cation are not available in our forward waveform simulation. However, the current al-230

gorithm, which is lightweight, can be repeated efficiently in a grid search surrounding231

a preliminary source location (Hejrani et al., 2017; Mustać & Tkalčić, 2016). Translat-232

ing the existing forward methods (e.g., Herrmann, 2013) into a modern programming233

framework where auto-differentiation functionality is supported, e.g., TensorFlow or Py-234

Touch, could be a promising way to incorporate the source location into the present in-235

version framework.236

It is worth noting that the point-wise L2
2 misfit function (Equations 5 and 8) as-237

sumes uncorrelated data noise in the observation. Recent studies demonstrate the ben-238

efit of considering correlated noise characterized by symmetric covariance matrices, which239

can be estimated either from ambient noise (Mustać & Tkalčić, 2016; Vackář et al., 2017;240

Duputel et al., 2012) or involve the prior assumptions of Earth’s structural error (Pha.m241

& Tkalčić, 2021; Vasyura-Bathke et al., 2021). Incorporating the covariance matrices into242

this study’s proposed algorithm is practical, but its robustness is subject to further in-243

vestigation. Similarly, it is feasible, but yet to be verified, to incorporate an unknown244

source time function (STF), representing the history of realizing energy rather than an245

impulse source in time, when the STF is represented as a weighted linear combination246

of several bases (Stähler & Sigloch, 2014).247

Because the proposed joint inversion is cast in the optimization framework, it is248

not benefited significantly if using uniform MT parameterization methods (Tape & Tape,249

2015; Stähler & Sigloch, 2014) due to their non-linearity. Instead, we chose the prim-250

itive MT parameterization for the present implementation, so the derivatives to MT pa-251

rameters can be calculated rapidly (Equation 9). For the same reason, we expect the im-252

plementation’s performance to be similar when using other linear MT parameterization253

methods (Kikuchi & Kanamori, 1982; Kawakatsu, 1996), which are convenient when full254

MT is not required, for example, deviatoric MT (Hejrani & Tkalčić, 2018; Hejrani et al.,255

2017).256

The use of L2
2 misfit function between predicted and observed waveform could pose257

a concern regarding the presence of local minima, most likely due to the waveform cycle-258

skipping. Thanks to the proposed solution’s agility, one quick solution is to repeat the259

inversion with multiple initializations surrounding the empirically guessed time shift con-260

figuration. Using novel waveform similarity measurements, which are not subjected to261

local minima, such as the Warsterstein distance (Sambridge et al., 2022), could be an262

interesting future research topic for this application.263

The main limitation of the presented method in an optimization framework is the264

lack of sufficient uncertainty estimates concerning inverted solutions because it only out-265

puts the optimal solution. This is of critical importance when applying for highly non-266

unique settings such as critically shallow earthquakes or explosions (Hejrani & Tkalčić,267

2020; Kawakatsu, 1996; Ford et al., 2010; Alvizuri et al., 2018; Hu et al., 2023). How-268

ever, thanks to the availability of the derivatives, it is readily available for further inves-269

tigation of effective gradient-based Hamiltonian Monte Carlo sampler (Fichtner & Simutė,270

2018).271

In conclusion, we present a lightweight inversion method in an optimization frame-272

work for a classical problem in regional MT inversion, the joint inversion of MT param-273

eters, and station-specific time shifts. The station-specific time shifts can be considered274

a simplified proxy for 3D Earth structure errors with incomplete Green’s functions in275

MT inversion problems. In doing so, the L2
2 misfit function between the prediction and276

shifted observation is cast in the frequency domain thanks to Parseval’s theorem. Tests277

on pilot events from the Long Valley Calderas demonstrated the proposed method’s fea-278

sibility, robustness, and scalability. This paper hopes to highlight a fresh opportunity279

–11–
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to benefit from the computational infrastructures thanks to the rapidly growing artifi-280

cial intelligence communities for geophysical problems.281

Data and code availability282

Data for this study come from the Berkeley Digital Seismic Network (BDSN), doi:10.7932/BDSN,283

operated by the UC Berkeley Seismological Laboratory, which is archived at the North-284

ern California Earthquake Data Center (NCEDC), doi:10.7932/NCEDC.285

Codes and data examples of the pilot event, as shown in Fig. 2, can be found at286

https://github.com/tsonpham/JointMTS.git.287
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Dreger, D., Tkalčić, H., & Johnston, M. (2000, April). Dilational Processes Ac-309

companying Earthquakes in the Long Valley Caldera. Science, 288 (5463), 122–310

125. Retrieved 2020-08-02, from https://www.sciencemag.org/lookup/doi/311

10.1126/science.288.5463.122 doi: 10.1126/science.288.5463.122312

Dreger, D. S., & Helmberger, D. V. (1990, October). Broadband modelling of lo-313

cal earthquakes. Bulletin of the SeismologicalSocietyof America, 80 (5), 1162–314

1179.315

Duputel, Z., Rivera, L., Fukahata, Y., & Kanamori, H. (2012, August). Uncertainty316

estimations for seismic source inversions. Geophysical Journal International ,317

190 (2), 1243–1256. Retrieved 2020-01-21, from https://academic.oup.com/318

gji/article/190/2/1243/645429 doi: 10.1111/j.1365-246X.2012.05554.x319
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