loading page

Origami-based cellular structures with in-situ transition between collapsible and load-bearing configurations
  • +2
  • Hiromi Yasuda,
  • Balakumaran Gopalarethinam,
  • Takahiro Kunimine,
  • Tomohiro Tachi,
  • Jinkyu Yang
Hiromi Yasuda
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA, Department of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195-2400, USA

Corresponding Author:[email protected]

Author Profile
Balakumaran Gopalarethinam
Department of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195-2400, USA
Takahiro Kunimine
Faculty of Mechanical Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
Tomohiro Tachi
Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
Jinkyu Yang
Department of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195-2400, USA

Abstract

Periodic cellular structures are widely used for engineering applications due to their lightweight, space filling, and load supporting nature. However, the configuration of the cellular structures is generally fixed after they are initially built, and it is extremely difficult to change their structural properties -- particularly their load bearing capabilities -- in a controllable fashion. Here, we show that volumetric origami cells made of Tachi-Miura Polyhedron (TMP) can exhibit in-situ transition between flat-foldable and load-bearing states without modifying their predefined crease patterns or hitting the kinematically singular configuration. We theoretically study this mechanical bifurcation to establish our design principle, and verify this experimentally by fabricating self-folding TMP prototypes made of paper sheets and heat-shrinking films. We demonstrate the improvement of load carrying capabilities by \(10^2\) by switching the TMP from foldable to load-bearing configurations. These reprogrammable structures can provide practical solutions in various engineering applications, such as deployable space structures, portable architectures for disaster relief, reconfigurable packing materials, and medical devices like stents.