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Abstract

A Lagrangian approach to the triple pendulum is utilized to derive the equations of motion. Linearization of the Lagrangian
near its stable equilibrium yields tractable equations of motion. The system’s behavior is characterized by solving the matrix
equation for its eigenfrequencies and eigenvectors. A python program, provided by Dr. Nelson, is utilized to model and plot
the system behavior near its eigenfrequencies. A driving frequency near the eigenfrequency results in the system rapidly
increasing in amplitude because of resonance. The steady-state solution of the system near its eigenfrequency results in
beats. The beat frequency increases as the driving frequency deviates from the eigenfrequency slightly.

Introduction

The triple pendulum is a holonomic system with 3 degrees of freedom. It consists of 3 identical point
masses of mass m joined by massless rigid rods of length L. The rods have friction-less pivots allowing
them freely rotate in the plane. It is one of simplest systems that exhibits chaos. I, Harman Khinda, utilize
the Langrangian approach, to investigate and characterize the triple pendulum. First the system’s kinetic, T,
and potential energy, U, are constructed.

Linearization allows for a tractable solution to the resulting eigenvalue problem. A driving term of the form
Asin(ωt) is added, and Python is utilized to plot the systems behavior. We will utilize the full nonlinear
equations of motion and plot them over a range times and driving frequencies near the system’s normal
modes.
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Figure 1: The famous triple Rod penudlum

Derivation

L = T − U

The Cartesian coordinates of the three masses are:

x1 = Lsin(θ1)

x2 = x1 + Lsin(θ2)

x3 = x2 + Lsin(θ3)

y1 = Lcos(θ1)

y2 = x1 + Lcos(θ2)

y3 = x2 + Lcos(θ3)

(1)

By inspection the potential energy is:

U = mgL(1 − cos(θ1)) +mgL((1 − cos(θ1)) + (1 − cos(θ2))

+mgL((1 − cos(θ1)) + (1 − cos(θ2)) + (1 − cos(θ3)))

g ≡ 9.8
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The stable equilibrium occurs is when the pendulum completely vertical, θi = 0. Substituting in a small
angle approximation , 1−cos(θ1) ≈ θ2

2 , allows us to linearize the equation, with respect to force, around the
stable equilibrium. This is when the pendulum is completely vertical, by inspection the linearized potential
energy is:

U = mgL[(
θ21
2

) + (
θ21
2

+
θ22
2

) + (
θ21
2

+
θ22
2

+
θ23
2

)] = mgl[3(
θ21
2

) + 2(
θ22
2

) + 1(
θ23
2

)]

The kinetic energy is first written in Cartesian and then the re-expressed in our natural coordinates, θi :

T =
1

2
m(ẋ21 + ẏ21 + ẋ22 + ẏ22 + ẋ23 + ẏ23)

= 1
2mL2[3θ̇1

2
+2θ̇2

2
+θ̇3

2
+4cos(θ1−θ2)θ̇1θ̇2

+ 2cos(θ1 − θ2)θ̇1θ̇2 + +2cos(θ2 − θ3)θ̇2θ̇3]
(2)

To linearize T we can just set cos(θi − θj) = 1

T =
1

2
mL2[3θ̇1

2
+ 2θ̇2

2
+ θ̇3

2
+ 4θ̇1θ̇2 + 2θ̇1θ̇2 + +2θ̇2θ̇3] (3)

L =
1

2
mL2[3θ̇1

2
+ 2θ̇2

2
+ θ̇3

2
+ 4cos(θ1 − θ2)θ̇1θ̇2 + 2cos(θ1 − θ2)θ̇1θ̇2 + +2cos(θ2 − θ3)θ̇2θ̇3]

-m gL[3(1-cos(θ1)) + 2(1 − cos(θ2)) + (1 − cos(θ3)]

≈ 1
2mL

2[3θ̇1
2

+ 2θ̇2
2

+ θ̇3
2

+ 4θ̇1θ̇2 + 2θ̇1θ̇2 + +2θ̇2θ̇3]

-mgL[3( θ21
2)+2(

θ22
2
)+1(

θ23
2
)]

(4)

The 3 Euler-Lagrange equations are:

∂L

∂θ1
=

∂

∂t

∂L

∂θ̇1

∂L

∂θ2
=

∂

∂t

∂L

∂θ̇2
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∂L

∂θ3
=

∂

∂t

∂L

∂θ̇3

Our next step could be to construct the M and K matrices. They are the generalized mass and generalized
spring coefficient matrices. The matrices must satisfy this generalized harmonic matrix equation: M Φ̈2 =
−KΦ equation. We could get the matrix elements directly from T and U we constructed earlier. Both the
M and K matrices are symmetric and their values come from T and U respectively. For M the diagonal
elements will be those of the form a ∗ θ̇i

2
and the off diagonal ones will be those with cross terms looking

of the form a ∗ θ̇iθ̇j , where a is the value entered in the matrix. These are to be put in their corresponding
elements of the matrix, M(i=j,j=i), M(i,j) andM(j,i). The K matrix, which gets it’s values from U, will have
only diagonal terms of the from 2aθ2i where 2a is the value entered in the matrix.

MΦ̈2 = −KΦ

Thus by inspection the M matrix is:

M = mL2

3 2 1
2 2 1
1 1 1


Playing the same game with the K matrix, yields:

K = mgl

3 0 0
0 2 0
0 0 1


Next we plug these matrices into our matrix equation. We utilize an ansatze of the form Φ = ~Be(iωt) where
~B is a 3-n column vector, ~B =< b1, b2, b3 >, containing complex elements containing whose phase in the
complex phase is the phase shift and amplitude the magnitude. Plugging the ansatze into the matrix-vector
equation and then dividing out by ~Be(iωt) yields:

K = −ω2M

K − ω2M = 0

Next non-dimensionalize K by dividing by mgl on both sides. We also define the new variables: ω2
0 ≡ g

L

and ωn = ω2

ω2
0

.

1

mgL
K − 1

m
ωnM = 0

Since these are square, non-singular matrices, the determinate of the left side must be zero for there to be a
nontrivial solution. We are assured there is a solution since K is a diagonal matrix.

det(
1

gL
K − ωnM) = 0
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= det

3 − 3ωn −2ωn −ωn
−2ωn 2 − 2ωn −ωn
−ωn −ωn 1 − ωn


Plugging this into Mathematica and using NSolve yields three eigenfrequinces:

ωn = .415775, 2.29428, 6.28995

Expressing ω2 terms of ω2
0:

ω2 = .415775ω2
0, 2.29428ω2

0, 6.28995ω2
0

To find the eigenvectors we plug the eigenfrequencies into our matrix-vector equation:

(K − ω2M) ~B = 0

=

3 − 3ω2 −2ω2 −ω2

−2ω2 2 − 2ω2 −ω2

−ω2 −ω2 1 − ω2

b1b2
b3


Setting b1 = 1 and then row-reducing yields 3 eigenvectors:

~B = < 1, 1.2921, 1.6312 >,< 1, .35286,−.23981 >,< 1,−1.6450, .76690 >

Eigenvectors we are contain information about each normal mode behavior; and all modes can be re-written
as a linear combination of these 3 eigenvectors. In the first normal mode all the masses are oscillating in
phase. The bottom has the largest amplitude, the middle swings less than it and the top the least. In the
second normal mode, the top two masses are in phase and the bottom is out of phase. The top mass is
oscillating with the largest amplitude, a lot less amplitude for the middle mass and even less for the bottom
mass. In the third normal mode the middle oscillating with the highest amplitude and the top and bottom
are oscillating out of phase from it. The top mass has a lower amplitude and the bottom mass the lowest
amplitude.

Setting L = .1, A = 1 and setting the driving frequency to eigenfrequencies and plotting yields:

It can be seen that at normal modes the system’s amplitude quickly increases because it is experiencing
resonance. The system’s behavior is also more smooth and the oscillation is more sinusiodial than when the
system is driven further from it’s normal mode. Choosing the first eigenfrequency, ω1 = (.415775ω2

0).5 for
further investigation; the following plots show the systems behavior as the driving frequency ranges from .5
ω1 to 1.5 ω1.

You can see near the eigenfrequency the system is experiencing resonance and has a relatively high ampli-
tude, while away from the normal frequency the system is at relatively low amplitudes. To investigate the
steady state solution of the system we choose ω1, .95ω1 and 1.05ω1 and plot them from range t = 0 to 100.
The plots show that the system’s steady state behavior, is a beat pattern. You can see at 5 percent difference
relative above or below ω1 results in the period of these transitions decreasing by relatively the same amount
in each case. To investigate how amplitude effects the system’s behavior at normal modes we will set the
driving frequency to ω1 and plot the systems steady state behavior at large amplitude, A = 3, 5, 6.

It can be seen that increasing the driving frequency increases the beat frequency. At A=6 the pendulum goes
in a runaway rotation frenzy; in this regime it’s unlikely that the small angle aproximation is holding.
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Figure 2: ω1ˆ2 = 415775ω0ˆ2

Figure 3: ω2ˆ2 = 2.29428ω0ˆ2
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Figure 4: ω3ˆ2 = 6.28995ω0ˆ2

Figure 5: 1.5ω1 very jagged
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Figure 6: .80ω1

Figure 7: .88ω1
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Figure 8: .90ω1

Figure 9: .95ω1
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Figure 10: ω1

Figure 11: 1.05ω1
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Figure 12: 1.1ω1

Figure 13: 1.3ω1
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Figure 14: .95ω1 from t = 0 to 100

Figure 15: ω1 from t = 0 to 100
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Figure 16: 1.05ω1 from t = 0 to 100

Figure 17: A = 3
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Figure 18: A = 5

Figure 19: A = 6
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Conclusion

In conclusion, the Langrangian approach combined with linearizing T and U, was utilized to find the M
and K matrices. Mathematica NSolve function was used to solve the resulting eigenvalue problem. Setting
the driving frequency near the eigenfrequencies leads the system to experience resonance. Investigating the
long-term steady state solution of our system near ω1 uncovers a beat behavior. A 5 percent relative change
above or below ω1 causes the period of these beats to decrease. Choosing ω1 and increasing the driving
amplitude also decreases the beat period.
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