
Generated using the official AMS LATEX template v6.1

Convection-Permitting Simulations of Precipitation over the Peruvian1

Central Andes: Strong Sensitivity to Planetary Boundary Layer2

Parameterization3

Yongjie Huang,a Ming Xue,a,b Xiao-Ming Hu,a,b Elinor Martin,b,c Hector Mayol Novoa,d Renee4

A. McPherson,e,f Andres Perez,d Isaac Yanqui Moralesd
5

a Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, OK, USA6

b School of Meteorology, University of Oklahoma, Norman, OK, USA7

c South Central Climate Adaptation Science Center, University of Oklahoma, Norman, OK, USA8

d Universidad Nacional de San Agustı́n de Arequipa, Arequipa, Perú9
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ABSTRACT: Regional climate dynamic downscaling at convection-permitting resolutions is

now practical and has potential to significantly improve over coarser-resolution simulations, but

the former is not necessarily free of systematic biases. Evaluation and optimization of model

configurations are therefore important. Twelve simulations at a convection-permitting grid spacing

of 3 km using the WRF model with different microphysics, planetary boundary layer (PBL), and

land surface model (LSM) schemes are performed over the Peruvian Central Andes during austral

summer, a region with particularly complex terrain. The simulated precipitation is evaluated using

rain gauge data in Peru and three gridded precipitation datasets. All simulations correctly capture

four precipitation hotspots associated with prevailing winds and terrain features along the east

slope of Peruvian Central Andes, though they generally overestimate the precipitation intensity.

The simulation using Thompson microphysics, ACM2 PBL and Noah LSM schemes has the

smallest bias. The simulated precipitation is most sensitive to PBL schemes, secondly sensitive

to microphysics and least sensitive to LSM. The simulated precipitation is generally stronger in

simulations using YSU than MYNN and ACM2 PBL schemes. All simulations successfully capture

the diurnal precipitation peak time mainly in the afternoon over the Peruvian Central Andes and in

the early morning along its east slope. However, there are significant differences over the western

Amazon Basin, where the precipitation peak occurs primarily in the late afternoon. Simulations

using YSU exhibit a 4–8-hour delay in the precipitation peak over the western Amazon Basin,

consistent with their stronger and more persistent low-level jets. These results provide guidance

on the optimal configuration of dynamic downscaling of future global climate projections for the

Peruvian Central Andes region.
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1. Introduction35

Due to constraints of computing resources, state-of-the-art global climate models (GCMs) are36

still run at coarse grid spacings (50–100 km at most, Juckes et al. 2020). Such resolutions are too37

coarse to resolve local-scale forcing and weather. The parameterized precipitation simulation in38

GCMs is generally poor (Giorgi 2019). Regional climate model (RCM) simulations nested with39

GCMs or regional climate dynamical downscaling have become an important tool to bring GCM40

resolutions to higher spatiotemporal resolutions and provide much more details on local flows and41

climate (e.g., Giorgi and Bates 1989; Leung et al. 2003; Giorgi 2006; Solman 2013; Rummukainen42

et al. 2015; Sun et al. 2016; Hu et al. 2018; Ambrizzi et al. 2019; Giorgi 2019; Kendon et al.43

2021). Higher-resolution RCMs improve the representation of lower boundary forcing, including44

those of complex topography, land use and land cover, coastlines, as well as mesoscale dynamical45

processes. Therefore, high-resolution RCMs are even more important for climate studies over46

regions with particularly complex terrain, such as regions over the Andes in South America.47

Many previous studies have indicated the added value of higher-resolution RCMs over different48

climate zones, compared to GCMs, lower-resolution RCMs or even low-resolution reanalyses (e.g.,49

Feser et al. 2011; Solman 2013; Torma et al. 2015; Rummukainen 2016; Giorgi 2019; Ciarlo et al.50

2020). For example, Kanamitsu and Kanamaru (2007) showed the advantage of 10-km simulation51

in near-surface wind and temperature over California from diurnal cycle to multidecadal trend52

compared to the NCEP–NCAR reanalysis at a grid spacing of ∼200 km. Gao et al. (2006)53

demonstrated improvement in simulation of East Asian precipitation when decreasing horizontal54

grid spacing from 360 to 45 km. Torma et al. (2015) found substantial added value of RCMs at55

horizontal resolutions of 0.44° (∼50 km) and 0.11° (∼12 km) for different metrics of precipitation56

over the European Alps areas characterized by complex terrain compared to the driving GCMs.57

Moufouma-Okia and Jones (2015) showed improvements with increasing horizontal resolutions58

with grid spacings from 150 to 12 km in rainfall simulation over Africa. Lucas-Picher et al.59

(2017) highlighted the added value of finer resolutions in the simulations of five North American60

weather phenomena, including orographic precipitation and snow in the Rocky Mountains, North61

American monsoon, snowbelts around the Great Lakes, wind in the St. Lawrence River Valley,62

and diurnal cycle of precipitation over Florida and the Caribbean. Falco et al. (2020) confirmed the63

added value of RCMs in simulating extreme precipitation and mean surface temperature in South64
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America by six RCM simulations at a resolution of ∼50 km from the World Climate Research65

Program (WCRP) Coordinated Regional Downscaling Experiment (CORDEX, Gutowski Jr et al.66

2016).67

All aforementioned studies ran RCMs at grid spacings of tens of kilometers, in which deep68

convection cannot be resolved explicitly and has to be parameterized. The parameterization69

of convection is considered a major source of uncertainty and has significant biases in RCM70

simulations of precipitation (Prein et al. 2015, 2020; Giorgi 2019; Lucas-Picher et al. 2021). In71

convection-permitting models (CPMs) with horizontal grid spacings of a few kilometers (generally72

< 4 km), convection parameterization can be switched off and deep convection can develop73

explicitly. Many studies have shown substantial improvements in precipitation simulation of CPMs74

compared to convection-parameterized models in different regions around the world, including75

Europe (e.g., Prein et al. 2013; Fosser et al. 2015; Berthou et al. 2020; Fumière et al. 2020; Lind76

et al. 2020), North America (e.g., Sun et al. 2016; Gao et al. 2017), Asia (e.g., Karki et al. 2017;77

Zhu et al. 2018; Li et al. 2021), Africa (e.g., Kouadio et al. 2020). Fosser et al. (2015) showed78

the performance of hourly intensity distribution and diurnal cycle of precipitation in southwestern79

Germany is significantly improved in the 2.8-km RCM simulations compared to the 50- and 7-km80

RCM simulations. Sun et al. (2016) showed that the 4-km convection-permitting simulation of81

summer precipitation over the Great Plains in the U.S. outperforms the simulation at a 25-km grid82

spacing in the extreme precipitation magnitude and the precipitation diurnal cycle benefiting from83

the more realistic simulations of the low-level jet and related atmospheric circulations in the 4-km84

run. Gao et al. (2017) examined simulations of the summer precipitation over the conterminous U.S.85

at grid spacings of 36, 12, and 4 km, and also found the 4-km convection-permitting simulations86

most skillfully reproduced the spatial distributions and diurnal cycle of the observed precipitation.87

Zhu et al. (2018) showed that forecasts at a 4-km grid spacing over China during the summer season88

outperformed global model forecasts in terms of spatial distribution, intensity, and diurnal variation89

of precipitation. These improvements of CPMs in precipitation simulation can be attributed to90

better resolved land surface conditions, explicit representation of convection and more realistic91

representation of local- and meso-scale dynamics (Prein et al. 2013; Sun et al. 2016; Zhu et al.92

2018). For these reasons, convection-permitting RCM simulations have been increasingly more93

used whenever computational resources allow (e.g., Prein et al. 2015; Liu et al. 2017; Stratton et al.94
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2018; Kendon et al. 2019; Chan et al. 2020; Coppola et al. 2020; Fosser et al. 2020; Guo et al.95

2020; Lind et al. 2020; Prein et al. 2020).96

Weather and climate in South America are strongly influenced by the complex Andes topography97

and synoptic features such as the South American low-level jet (SALLJ) (Marengo et al. 2002;98

Vernekar et al. 2003; Vera et al. 2006; Salio et al. 2007; Romatschke and Houze Jr 2010; Mohr et al.99

2014; Rasmussen and Houze Jr 2016; Jones 2019; Montini et al. 2019; Chavez et al. 2020; Poveda100

et al. 2020). The rising and withdrawing of nocturnal SALLJ with high instability and abundant101

moisture trigger the extreme austral summer convection on the east slope and foothills of the central102

Andes, respectively (Romatschke and Houze Jr 2010; Chavez et al. 2020). To date, there have been103

numerous RCM simulations conducted in South America (e.g., Roads et al. 2003; Vernekar et al.104

2003; Marengo et al. 2010; Solman 2013; Gutowski Jr et al. 2016; Ambrizzi et al. 2019; Martinez105

et al. 2019; Solman and Blázquez 2019; Zaninelli et al. 2019; Avila-Diaz et al. 2020; Falco et al.106

2020; Chimborazo and Vuille 2021; Hodnebrog et al. 2021; Martinez et al. 2022; da Silva et al.107

2023). However, almost all these RCM simulations were performed at the grid spacing of tens108

of kilometers, and few convection-permitting RCM simulations have been conducted over South109

America (e.g., Schumacher et al. 2020; Bettolli et al. 2021; Lavin-Gullon et al. 2021; Junquas110

et al. 2022). Bettolli et al. (2021) examined four convection-permitting RCM simulations and111

four statistical downscaling models in simulating daily extreme precipitation events in southeastern112

South America in the warm season from October 2009 to March 2010, and found that most models113

are able to capture the selected extreme events, despite a large spread in accumulated values and114

the location of heavy precipitation among the models, which was also indicated by Lavin-Gullon115

et al. (2021). Hodnebrog et al. (2021) downscaled three GCMs to 50-km horizontal grid spacing116

over South America, and to 10-km grid spacing for central Chile, Peru, and southern Brazil, and117

found that increasing the model resolution could produce a different sign for precipitation trend118

projections for Peru and southern Brazil. They suggested that an ensemble of CPM simulations is119

necessary to increase the reliability of precipitation projection for Peru and southern Brazil, where120

convective precipitation is dominant. Schumacher et al. (2020) found that 3-km simulation achieves121

a better performance of precipitation as elevation increases, most likely due to the better-resolved122

topography in the Central Andes of Chile and Argentina. Some short-period modeling studies123

(e.g., Mourre et al. 2016; Moya-Álvarez et al. 2019; Paccini and Stevens 2023) also emphasized124
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the added value of convection-permitting resolutions in improving precipitation simulations across125

various regions in Peru and over the Amazon Basin. Supported by funding from Universidad126

Nacional de San Agustı́n de Arequipa, Arequipa, Peru, this project seeks to perform future climate127

projections for Peru and the surrounding regions at a 3-km grid spacing based on the Weather128

Research and Forecasting (WRF) model (Skamarock et al. 2019) to examine projected changes129

in high-impact weather events in the Peruvian Central Andes region (Poveda et al. 2020). Before130

actually conducting future climate simulations over decade-long periods, we want to evaluate and131

optimize the configurations of the model for the region.132

Convection-permitting simulations of precipitation are strongly influenced by physics parame-133

terizations, including microphysics (MP), planetary boundary layer (PBL), and land surface model134

(LSM) schemes (e.g., Zhu and Xue 2016; Feng et al. 2018; Guo et al. 2019; He et al. 2019; Huang135

et al. 2020; Kouadio et al. 2020; Taraphdar et al. 2021; González-Rojı́ et al. 2022). González-Rojı́136

et al. (2022) examined the sensitivity of precipitation over southern Peru to physics parameteri-137

zation schemes in WRF V3.8.1, however, very limited physics schemes and combinations were138

tested in their study. As the first step to conduct long-term convection-permitting regional cli-139

mate simulation, a series of two-month convection-permitting simulations using different physics140

parameterization schemes are performed over the Peruvian Central Andes during austral summer141

using the planned nested grid configuration. It should be noted that initially a configuration using142

Thompson MP, YSU PBL, and Noah LSM schemes based on previous studies was used to make a143

10-year simulation over 2010–2019. It was found that precipitation was significantly over-predicted144

(Chen et al. 2022), which also motivated this study to compare configurations using combinations145

of different MP, PBL, and LSM schemes. The main objective of this study is to evaluate the146

performance of WRF-based CPMs in simulating precipitation over the Peruvian Central Andes by147

comparing with available best observational data. The results of this study will provide guidance148

on the optimal configuration of CPM for future climate dynamic downscaling for the Peruvian149

Central Andes region.150

The rest of this paper is organized as follows. Section 2 describes the model and experiment151

setup and observational data used for evaluation. Section 3 presents and discusses the precipitation152

evaluation results. A summary is presented in Section 4.153
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2. Method and data154

a. Model setup155

The WRF model Version 4.2.1 (Skamarock et al. 2019) is used. The hourly European Centre156

for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) data (Hersbach et al. 2020) are used157

for initial and boundary conditions for the simulations. Two one-way nested domains at 15- and158

3-km horizontal grid spacings are used, which cover the entire South America and the Peruvian159

central Andes region, respectively (Fig. 1a). Both domains use 61 stretched vertical levels topped160

at 20 hPa. Spectral nudging technique (Miguez-Macho et al. 2004) is applied to the outer 15-km161

domain to maintain large-scale circulations. The spectral nudging configurations are similar to162

those in Hu et al. (2018). The nudging variables include horizontal wind components, temperature,163

moisture, and geopotential height above PBL height. Nudging wave numbers of 5 and 3 in the164

zonal and meridional directions and nudging coefficient of 3× 10−5 s−1 are adopted throughout165

the simulation period. The simulations cover two months (January and February 2019) during the166

austral summer with the first month treated as the spin-up period mainly for land surface models.167

Limited by computational resources, the simulations cannot span over multiple years. Based on168

the assumption that the relative performance for precipitation can be revealed by simulations over a169

couple of months in the rainy season, we choose to run over two months from January to February,170

which are the climatological peak months of precipitation during the austral summer (Mohr et al.171

2014; Espinoza et al. 2015).172

The combinations of MP, PBL and LSM schemes of the 12 sensitivity experiments examined176

in this study are listed in Table 1. The MP schemes include the Thompson scheme (THOM)177

(Thompson et al. 2008), Thompson aerosol-aware scheme (THOMA) (Thompson and Eidhammer178

2014), WRF Single–moment 6–class scheme (WSM6) (Hong and Lim 2006), and Morrison179

2–moment scheme (MORR) (Morrison et al. 2009). The PBL schemes include Yonsei University180

scheme (YSU) (Hong and Lim 2006), Mellor–Yamada Nakanishi Niino (MYNN) level 2.5 scheme181

(Nakanishi and Niino 2009), and Asymmetric Convection Model 2 scheme (ACM2) (Pleim 2007).182

The LSM schemes include the unified Noah LSM (Noah) (Ek et al. 2003), Noah multiple-physics183

LSM (NoahMP) (Niu et al. 2011), and Community Land Model (CLM) version 4 (Lawrence et al.184

2011). Other physics parameterizations are the same among the sensitivity experiments, including185
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Table 1. Physics parameterization schemes in the 12 sensitivity experiments

Experiment MP PBL LSM

THOM YSU Noah THOM YSU Noah

THOM YSU NoahMP THOM YSU NoahMP

THOM YSU CLM THOM YSU CLM

THOM MYNN Noah THOM MYNN Noah

THOM MYNN NoahMP THOM MYNN NoahMP

THOM ACM2 Noah THOM ACM2 Noah

THOM ACM2 NoahMP THOM ACM2 NoahMP

THOMA YSU Noah THOMA YSU Noah

WSM6 YSU Noah WSM6 YSU Noah

WSM6 MYNN Noah WSM6 MYNN Noah

MORR YSU Noah MORR YSU Noah

MORR MYNN Noah MORR MYNN Noah

(Beck et al. 2019) are used for the evaluation of simulated monthly and diurnal precipitation.196

IMERG incorporates monthly gauge analysis product produced by the Global Precipitation Cli-197

matology Centre (GPCC) at the grid spacing of 1° (Huffman et al. 2019), and MSWEP uses daily198

observations from gauges worldwide to determine the merging weights, calculate the wet-day199

biases for the reanalyses, and correct the precipitation estimates near gauge stations (Beck et al.200

2019). However, gauge stations used by IMERG and MSWEP are very sparse in our study region201

(Huffman et al. 2019; Beck et al. 2019). CMOPRH does not blend rainfall station gauge data into202

its estimates (Joyce et al. 2004). Monthly precipitation data of about 400 rain gauge stations in203

Peru (Fig. 1b, Aybar et al. 2020) are also used for the evaluation of global precipitation datasets204

and simulated precipitation. Due to the limited spatial coverage and coarse temporal resolutions205

of rain gauge data, evaluations of spatial distribution and diurnal cycle of precipitation are mainly206

based on the global precipitation datasets.207

For the comparison among the precipitation datasets at different resolutions, CMORPH, MSWEP208

and the simulated precipitation fields are regridded to the IMERG grid (0.1° × 0.1°) by using the209

“patch recovery” technique (Sun et al. 2016).210
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c. Evaluation metrics211

The mean bias (MB) is used to examine the mean error, given by212

MB =
1
𝑁

𝑁∑︁
𝑖=1

(𝑀𝑖 −𝑂𝑖), (1)

where 𝑁 is the total number of samples, 𝑀 and 𝑂 represent simulations and observations, respec-213

tively.214

The root mean square error (RMSE) is selected to examine the average magnitude of the simu-215

lation errors, which is216

RMSE =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑀𝑖 −𝑂𝑖)2. (2)

To characterize the variation/shape of the distribution for a given variable, Taylor Skill Score217

(TSS) (Taylor 2001) is adopted and given by,218

TSS =
4(1+𝑅)[(

𝜎𝑟 +
1
𝜎𝑟

)2
(1+𝑅0)

] , (3)

where 𝜎𝑟 is the normalized standard deviation given by simulated root mean square (RMS) divided219

by the observed RMS, 𝑅 is the correlation coefficient, and 𝑅0 is the maximum correlation attainable,220

which is set to 1. Thus, if the correlation coefficient and normalized standard deviation are 1, TSS221

is 1.222

3. Results223

a. Monthly precipitation224

Mean daily precipitation of the three precipitation products and simulations in February 2019225

are shown in Fig. 2 to examine the spatial distribution characteristics. Similar results were found226

in January 2019 although it is treated as the spin-up period. Thus, results in February 2019 are227

discussed in detail here. There are four precipitation hotspots along the east slope of the Peruvian228

Central Andes (marked by numbers in white in Fig. 2), although there exists a difference in229

precipitation intensity among the three precipitation products (Figs. 2a–c). The four hotspots are230
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all near the notches of terrain, indicating that terrain plays an important role in producing these231

hotspots, which was also indicated in previous studies (e.g., Mohr et al. 2014; Espinoza et al. 2015;232

Chavez and Takahashi 2017; Junquas et al. 2018). Precipitation from IMERG and MSWEP are233

closer to each other in terms of precipitation distribution and intensity over the western Amazon234

Basin to the east of the Peruvian Central Andes (Figs. 2a and c). All simulations successfully235

capture the four precipitation hotspots. However, they overestimate their intensity compared to236

IMERG and MSWEP, with the maximum precipitation intensity being generally over 16 mm day−1
237

(Fig. 2). The mean daily precipitation over the entire western Amazon Basin is larger than 16 mm238

day−1 in the simulations using YSU PBL scheme combined with different MP and LSM schemes239

(Figs. 2d, e, f, k, l, and n), while both those in IMERG and MSWEP are less than 16 mm day−1
240

in this region (Figs. 2a and c). It means that no matter what MP or LSM schemes are used,241

simulations using YSU PBL scheme tend to produce larger mean daily precipitation. The MYNN242

PBL scheme (Figs. 2g, h, m and o) simulates a smaller area and ACM2 PBL scheme (Figs. 2d, e,243

f, k, l, and n) simulates an even smaller area with precipitation over 16 mm day−1 in the western244

Amazon Basin. Therefore, among the MP, PBL, and LSM schemes tested in this study, WRF245

simulations of total precipitation are the most sensitive to the PBL scheme, followed by the MP246

scheme, and least sensitive to the LSM scheme (Figs. 2d–o). It should be noted that the findings247

regarding the sensitivity of WRF simulations of total precipitation are based on the schemes tested248

in this study, which may not cover all possible configurations.249

11

Und
er 

Rev
iew





In February 2019, compared to the rain gauge data (mean daily precipitation of∼5.25 mm day−1),253

IMERG and CMORPH generally underestimate the mean daily precipitation with the mean biases254

of −1.70 and −1.90 mm day−1, respectively (Figs. 3a and b), while MSWEP generally has positive255

bias with the mean bias of 0.29 mm day−1 (Fig. 3c). Among the three precipitation products256

(Figs. 3a–c), MSWEP has the smallest RMSE of 2.08 mm day−1, while RMSEs in IMERG and257

CMORPH are 2.87 and 3.80 mm day−1 respectively. Thus, precipitation of MSWEP is closer258

to rain gauge data than those of IMERG and CMORPH. All simulations generally overestimate259

precipitation (Figs. 3d–o) with the smallest mean bias of 0.49 mm day−1 and RMSE of 2.85 mm260

day−1 in THOM ACM2 Noah (Fig. 3i) and the largest mean bias of 3.92 mm day−1 and RMSE of261

6.00 mm day−1 in THOMA YSU Noah (Fig. 3k).262
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Fig. 3. Monthly precipitation biases (difference between (a–c) precipitation products or (d–o) WRF simulations

in 3-km domain using different physics schemes and the rain gauge data, in mm day−1) in February 2019. The

root mean squared error (RMSE) and mean bias along with the number of samples in parentheses are given in

each panel. The black contour in each panel represents 1-km terrain elevation.

263

264

265

266
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To quantify the differences, TSS as a function of relative mean (simulated mean divided by267

referenced mean), and mean bias as a function of RMSE of simulated mean daily precipitation in268

February 2019 relative to IMERG, CMORPH, and MSWEP, respectively (Fig. 4), are examined.269

The results based on IMERG and MSWEP are similar to each other, while they are more different270

from those based on CMORPH. As discussed above, IMERG and MSWEP are more reliable than271

CMORPH, therefore our further discussions are mainly based on MSWEP. Among all simulations,272

THOM ACM2 Noah has the highest TSS (∼0.76) and its relative mean is close to 1 (Fig. 4a).273

Meanwhile, THOM ACM2 Noah has the lowest RMSE (∼4.4 mm day−1) and its mean bias is near 0274

(Fig. 4b). Therefore, based on these metrics, THOM ACM2 Noah is generally better than the other275

simulations. Changing the LSM to NoahMP, the TSS, bias and RMSE in THOM ACM2 NoahMP276

are changed slightly to ∼0.73, ∼ −0.25 mm day−1 and ∼4.8 mm day−1, respectively (Fig. 4).277

However, changing the PBL scheme, TSS, bias and RMSE are changed significantly to ∼0.55,278

∼4.8 mm day−1 and ∼8.0 mm day−1 respectively in THOM YSU Noah and to ∼0.68, ∼2.3 mm279

day−1 and ∼5.6 mm day−1 respectively in THOM MYNN Noah (Fig. 4). When changing the280

MP scheme, the ranges of TSS, bias and RMSE are ∼0.13 (0.42–0.55), ∼3.4 (4.8–8.2) mm281

day−1 and ∼3.5 (8.0–11.5) mm day−1 respectively among the simulations of THOM YSU Noah,282

THOMA YSU Noah, WSM6 YSU Noah, and MORR YSU Noah. Their ranges are ∼0.03 (0.67–283

0.70), ∼1.2 (1.9–3.1) mm day−1 and ∼0.7 (5.3–6.0) mm day−1 respectively among the simulations284

of THOM MYNN Noah, WSM6 MYNN Noah, and MORR MYNN Noah. They are all smaller285

than the ranges of changing the PBL scheme, which are ∼0.21 (0.55–0.76), ∼4.8 (0.0–4.8) mm286

day−1 and ∼3.6 (4.4–8.0) mm day−1 respectively among the simulations of THOM YSU Noah,287

THOM MYNN Noah, and THOM ACM2 Noah. Therefore, based on these objective metrics,288

simulations are more sensitive to the PBL scheme among the schemes tested in this study and289

simulation THOM ACM2 Noah is the closest to precipitation products IMERG and MSWEP.290
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Fig. 4. Scatter plots of (a) Taylor Skill Score (TSS) as a function of relative mean (simulated mean divided

by referenced mean) and (b) bias (mm day−1) as a function of root mean squared error (RMSE, mm day−1)

of simulated monthly precipitation in February 2019 relative to IMERG (red), CMORPH (blue), and MSWEP

(green), respectively.

291

292

293

294
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b. Diurnal cycle of precipitation295

Figure 5 shows the precipitation peak time calculated from hourly precipitation of IMERG,296

CMORPH, and simulations using different physics schemes in February 2019. The average297

diurnal precipitation in the mountain, foothill, and plain regions are displayed in Fig. 6. Because298

MSWEP is 3-hourly average precipitation and it cannot accurately depict the precipitation peak299

(Fig. 6), it is not included in Fig. 5. Although there are differences in precipitation intensity300

between IMERG and CMORPH (Figs. 2a and b), their precipitation peak times are very consistent301

with each other (Figs. 5a and b). Previous studies (e.g., Dezfuli et al. 2017; Sungmin and Kirstetter302

2018; Tan et al. 2019; Watters and Battaglia 2019; Afonso et al. 2020) have demonstrated that303

IMERG has the ability to accurately capture the diurnal cycle of precipitation in different regions304

including South America. Over the Peruvian Central Andes for terrain elevation higher than 1305

km, the precipitation peak time is mainly in the afternoon during ∼14–19 LST (Figs. 5a and b).306

The average precipitation peak in the mountain region is at about 16 LST with ∼0.47 and ∼0.33307

mm h−1 in IMERG and CMORPH respectively (Fig. 6a). Along the east slope of the Peruvian308

Central Andes for terrain elevations less than 1 km, the precipitation peak time is mainly in the309

early morning (∼0–6 LST, Figs. 5a, 5b, and 6b). Over the western Amazon Basin to the east310

of the Peruvian Central Andes, the precipitation peak time is mainly during ∼11–17 LST (Figs.311

5a and b) with the maximum average precipitation of ∼0.84 and ∼0.80 mm h−1 in IMERG and312

CMORPH respectively (Fig. 6c). The simulations successfully capture the precipitation peak time313

over the Peruvian Central Andes and also along its east slope (Figs. 5c–n), with their precipitation314

peak times basically in the same time periods as those of IMERG and CMORPH. However, all315

simulations overestimate the precipitation intensity in these periods with the simulations using316

ACM2 PBL scheme being closer to IMERG (Figs. 6a and b). There exist larger differences in the317

simulated precipitation peak time over the western Amazon Basin compared to the observed (Fig.318

5). In the simulations using the YSU PBL scheme (except MORR YSU Noah), the precipitation319

peak time in the region (8°–11°S, 67°–70°W) over the western Amazon Basin is delayed by about320

4–8 hours compared to those of IMERG and CMORPH (Figs. 5a–e, j, k, and m), and their averaged321

precipitation has two peaks at ∼13 and ∼2 LST (Fig. 6c). The precipitation at the latter peak can322

be reduced when using other PBL schemes, especially the ACM2 scheme (Fig. 6c), thus the delay323

bias in the simulated precipitation peak time can also be reduced (Figs. 5f–i, l, and n).324
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Fig. 6. Averaged diurnal precipitation (mm h−1) in the (a) mountain, (b) foothill, and (c) plain regions shown

in Fig. 5 from IMERG, CMORPH, MSWEP (3-hourly mean), and WRF simulations using different physics

schemes in February 2019.

330

331

332

19

Und
er 

Rev
iew



To examine the evolution of diurnal precipitation in the region with a larger bias over the western333

Amazon Basin, Hovmöller diagrams of precipitation from IMERG, CMORPH, and simulations334

using different physics schemes in February 2019 are created and shown in Fig. 7. The precipitation335

evolution between IMERG and CMORPH are very consistent with each other (Figs. 7a and b).336

Precipitation over the Andes for terrain elevations higher than 2 km (∼78°–76°W) mainly starts at337

∼16 UTC (11 LST) and ends at ∼8 UTC (3 LST) next day (Figs. 7a and b). At the east slope and338

foothills of Andes for terrain elevations lower than 2 km (∼76°–74°W), precipitation has a peak339

between 8–12 UTC (3–7 LST) (Figs. 7a and b), which is consistent with that shown in (Figs. 5a and340

b). Over the western Amazon Basin (∼74°–66°W), precipitation is mainly during ∼15–24 UTC341

(10–19 LST) and can be extended to 8 UTC (3 LST) next day for the region between 72°–68°W with342

the peak at around 21 UTC (16 LST) (Figs. 7a and b). All simulations basically capture the main343

precipitation period over the Andes, at the east slope and foothills of the Andes, and over the western344

Amazon Basin (Figs. 7c–n), however, the simulated precipitation intensities are overestimated,345

especially for the simulations using the YSU PBL scheme with large areas of precipitation > 1.4346

mm h−1. The precipitation peak in the region between 70°–66°W is mainly within 0–12 UTC347

(19–7 LST) in the simulations using the YSU PBL scheme except for MORR YSU Noah (Figs.348

7c–e, j, k, and m), which is different from those of IMERG and CMORPH (Figs. 7a and b). This349

bias can be reduced in simulations using other PBL schemes especially the ACM2 scheme (Figs.350

7f–i, l, and n). Generally, the precipitation evolution and intensity in THOM ACM2 Noah are351

closer to IMERG than in other simulations. These results are consistent with those shown in Figs.352

2 and 5.353

Overall, through the subjective and objective evaluation of monthly and diurnal precipitation,360

all simulations generally capture the main characteristics of observations, while they generally361

overestimate precipitation amount, especially in complex terrain regions, which is similar to362

previous CPM studies in different regions, such as East Asia (Guo et al. 2019; Gao et al. 2020; Li363

et al. 2020; Yun et al. 2020), European region (Kendon et al. 2012; Ban et al. 2014; Adinolfi et al.364

2020), West Africa (Berthou et al. 2019), and Andes region (Mourre et al. 2016; Moya-Álvarez365

et al. 2019; Junquas et al. 2022). However, in the United States, there is a general dry bias over366

the central and southeast plains and a positive precipitation bias over the Rockies during the boreal367

warm season (Sun et al. 2016; Liu et al. 2017; Gensini et al. 2022). In the meanwhile, the simulation368
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Fig. 7. Hovmöller diagrams of diurnal precipitation (shaded, mm h−1) for the region marked by the white

rectangle shown in Fig. 2 from (a) IMERG, (b) CMORPH, and (c–n) WRF simulations using different physics

schemes in February 2019. The black curve in each panel represents meridionally-averaged terrain elevation

(km) in the region marked by the white rectangle shown in Fig. 2. The left Y-axis is for the Hovmöller diagram

and represents the time in UTC outside the parentheses and in the approximate Local Standard Time (LST =

UTC − 5 h, based on the longitude of 75°W) in the parentheses. The right Y-axis is for the terrain elevation.

354

355

356

357

358

359

results in this study are more sensitive to the PBL scheme than the MP and LSM schemes. It is369

similar to the result of Kouadio et al. (2020), which revealed a stronger impact of PBL than MP370
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with the better performance of ACM2 non-local PBL scheme when simulating rainfall distribution371

over the Guinean coast and surroundings. Meroni et al. (2021) found PBL scheme has a greater372

impact than MP on the structure and distribution of heavy rainfall in the African continent. Prein373

et al. (2022) also indicated mesoscale convective systems in the central US are more sensitive to374

MP while PBL schemes are more influential in Brazil. Thus, differences among the simulations375

using different PBL schemes are further investigated in the next section.376

c. Differences from PBL schemes377

To examine the differences in the simulations due to using different PBL schemes, three simula-378

tions, i.e., THOM YSU Noah, THOM MYNN Noah, and THOM ACM2 Noah that differ only in379

the PBL scheme used, are selected for further analysis. Because the low-level wind field is crucial380

to moisture transport and convection triggering, mean wind vectors at 925 hPa from ERA5 and the381

difference between the three simulations and ERA5 in February 2019 are displayed in Figs. 8a1–d1.382

From mean winds in Fig. 8a1, northerly winds prevail at 925 hPa along the Andes. The prevailing383

northerly winds combined with the notches of terrain result in the four precipitation hotspots along384

the Andes (Fig. 2). The differences in mean winds between simulated and ERA5 winds (Figs.385

8b1–d1) are smaller than 1 m s−1, indicating the simulated mean winds in THOM YSU Noah,386

THOM MYNN Noah, and THOM ACM2 Noah are consistent with ERA5. Our preliminary tests387

(not shown) indicate that it is mainly associated with spectral nudging used in the 15-km domain,388

which makes simulated large-scale circulations consistent with those of ERA5.389

From the diurnal deviation wind vectors shown in Figs. 8a2–d2, the simulations capture the evo-390

lution of deviation wind vectors well, which are consistent with that of ERA5, while the amplitudes391

of deviation winds are relatively large in the simulations, especially in THOM YSU Noah. The392

evolution of daily deviation winds can mostly be explained by the Blackadar inertial oscillation393

theory (Blackadar 1957), which is closely tied to boundary layer mixing and therefore influenced394

by the choice of PBL schemes. The critical roles of boundary layer inertial oscillations in pro-395

ducing nighttime/early morning precipitation in the rainy season in different regions have been396

demonstrated, such as the Asian monsoon region (Xue et al. 2018; Zhang et al. 2019; Chen 2020),397

Great Plains of the United States (Higgins et al. 1997; Trier et al. 2010), and east of the Andes398

(Saulo et al. 2000; Vernekar et al. 2003; Nicolini and Skabar 2011).399
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From 15 to 21 UTC (10–16 LST), the deviation wind vectors have a large change in terms of400

direction and magnitude, especially over the western Amazon Basin. The southerly deviation401

winds over the western Amazon Basin at 21 UTC (16 LST) are in the opposite direction to the402

mean winds, which reduces the full winds. It is associated with daytime boundary layer mixing.403

The magnitudes of deviation winds at 21 UTC (16 LST) are the largest in THOM YSU Noah,404

followed by THOM MYNN Noah, and are the smallest in THOM ACM2 Noah. The magnitudes405

of deviation winds in THOM ACM2 Noah are closer to ERA5 than THOM YSU Noah and406

THOM MYNN Noah (Figs. 8a2–d2). It means that using different PBL schemes for simulations407

can lead to differences in boundary layer vertical mixing and then the evolution of large-scale wind408

fields, which influences the convergence of low-level winds in terms of both intensity and spatial409

distribution. From the 925-hPa wind divergence at 03 UTC (22 LST) (Figs. 8a2–d2), there are410

larger areas with wind convergence (divergence of less than −1×10−5 s−1) in THOM YSU Noah,411

which mainly covers the region of 10°–8°S, 70°–66°W over the western Amazon Basin. It can412

induce stronger and longer-lasting precipitation, which partially explains the stronger monthly413

and diurnal precipitation intensity and delayed precipitation peak time over the western Amazon414

Basin in THOM YSU Noah (as seen in Figs. 2, 5 and 7). This convergence is weaker in415

THOM MYNN Noah and THOM ACM2 Noah (Figs. 8c2 and d2), which partially explains the416

weaker precipitation over the western Amazon Basin during 00–12 UTC (19–07 LST) (Fig. 7).417
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Fig. 8. (a1) Mean wind vectors at 925 hPa from ERA5 and difference between the simulations and ERA5

(WRF−ERA5) for (b1) THOM YSU Noah, (c1) THOM MYNN Noah, and (d1) THOM ACM2 Noah in Febru-

ary 2019, respectively. (a2–d2) Deviation wind vectors (differences from daily mean wind vectors) at 925 hPa at

15 UTC [10 LST (Local Standard Time) at 75°W, red], 21 UTC (16 LST, blue), 03 UTC (22 LST, black), and 09

UTC (04 LST, green) in February 2019 for (a2) ERA5, (b2) THOM YSU Noah, (c2) THOM MYNN Noah, and

(d2) THOM ACM2 Noah, respectively. The orange dot-filled areas in b1–d1 indicate the regions with 925-hPa

wind speed differences less than 1 m s−1. The orange dot-filled areas in a2–d2 indicate the regions with 925-hPa

wind divergence less than −1× 10−5 s−1 at 03 UTC (22 LST). The magenta contour in each panel represents

1-km terrain elevation.
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To examine the differences in vertical dynamic and thermodynamic structures, the vertical427

cross sections of meridionally-averaged and zonally-averaged equivalent potential temperature (𝜃e),428

rainwater mixing ratio (𝑄r), and wind vectors are shown in Figs. 9 and 10 respectively. At 15 UTC429

(10 LST), the vertical gradient of 𝜃e is larger in THOM YSU Noah and THOM MYNN Noah430

than that in THOM ACM2 Noah, where 𝜃e increases from 344 to over 352 K from 2 km to431

surface in THOM YSU Noah and THOM MYNN Noah, while it increases from 344 to ∼350 K in432

THOM ACM2 Noah (Figs. 9a1–c1 and 10a1–c1). Therefore, more warm, moist energy exists in433

the lower levels in THOM YSU Noah and THOM MYNN Noah than that in THOM ACM2 Noah.434

The horizontal winds in the upper levels are mainly easterly (Figs. 9a1–c1), while the horizontal435

winds in the lower levels are dominated by northerly winds (Figs. 10a1–c1). The 𝑄r over the436

western Amazon Basin is larger in THOM YSU Noah which can be over 0.08 g kg−1, followed by437

THOM MYNN Noah, and the least in THOM ACM2 Noah (Figs. 9a1–c1), which are consistent438

with the differences in precipitation among the three simulations (Figs. 7c, f and h).439

At 21 UTC (16 LST), 𝜃e in the lower levels increases in all three simulations, to over 354 K near440

surface in THOM YSU Noah and THOM MYNN Noah, and to ∼352 K in THOM ACM2 Noah441

(Figs. 9a2–c2 and 10a2–c2), which is mainly associated with solar radiative heating in the daytime.442

The low-level 𝑣 winds weaken at 21 UTC (16 LST) (Figs. 10a2–c2) compared to those at 15 UTC443

(10 LST) (Figs. 10a1–c1), which is mainly associated with the daytime vertical mixing process444

(consistent with those shown in Fig. 8). The 𝑄r in THOM YSU Noah is larger than that in445

THOM MYNN Noah, resulting in stronger precipitation (Fig. 7c).446

From 03–09 UTC (22–04 LST)), there are more obvious convergence of 𝑢 and 𝑣 winds below 4447

km, and more warm, moist energy release in THOM YSU Noah (Figs. 9a3–a4 10a3–a4, and also448

8b2), associated with faster decreasing of 𝜃e, especially in the region of (10°–8°S, 70°–66°W).449

Thus, the 𝑄r is larger and precipitation is stronger in THOM YSU Noah (Figs. 7c, 9a3–a4, and450

10a3–a4). The convergence of 𝑢 and 𝑣 winds below 4 km are weaker in THOM MYNN Noah451

(Figs. 9b3–b4, 10b3–b4, and also Fig. 8c2). Although there is also high 𝜃e in the low levels452

in THOM MYNN Noah, weaker wind convergence leads to less warm, moist energy release,453

resulting in less 𝑄r and weaker precipitation in THOM MYNN Noah (Figs. 7f, 9b3–b4, and454

10b3–b4). There are divergences of 𝑢 and 𝑣 winds below 4 km over the western Amazon Basin,455
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and 𝜃e is generally lower in THOM ACM2 Noah, leading to lesser 𝑄r and weaker precipitation456

(Figs. 7f, 8d2, 9c3–c4, and 10c3–c4).457

Fig. 9. Vertical cross sections of meridionally-averaged equivalent potential temperature (𝜃e, K, blue contours

in 2-K intervals), rainwater mixing ratio (𝑄r, shaded, g kg−1), and wind vectors (𝑢, 𝑤 × 20) for the region of

(10°–8°S, 78°–64°W) shown in Fig. 5 at (a1–c1) 15 UTC (10 LST), (a2–c2) 21 (16 LST), (a3–c3) 03 (22

LST), and (a4–c4) 09 UTC (04 LST) in (a1–a4) THOM YSU Noah, (b1–b4) THOM MYNN Noah, and (c1–c4)

THOM ACM2 Noah in February 2019, respectively. The gray shaded area in each panel represents the missing

value due to the terrain.
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Fig. 10. Vertical cross sections of zonally-averaged equivalent potential temperature (𝜃e, K, blue contours

in 2-K intervals), rainwater mixing ratio (𝑄r, shaded, g kg−1), and wind vectors (𝑣, 𝑤 × 20) for the region of

(18°–6°S, 70°–68°W) shown in Fig. 5 at (a1–c1) 15 UTC (10 LST), (a2–c2) 21 UTC (16 LST), (a3–c3) 03 (22

LST), and (a4–c4) 09 UTC (04 LST) in (a1–a4) THOM YSU Noah, (b1–b4) THOM MYNN Noah, and (c1–c4)

THOM ACM2 Noah in February 2019, respectively. The gray shaded area in each panel represents the missing

value due to the terrain.
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To further examine the differences in PBL structures in the three simulations, time-height sec-470

tions of averaged horizontal wind speeds (wspd), potential temperature (𝜃), and specific humidity471

(𝑞v) in the region of (10°–8°S, 70°–68°W) in THOM YSU Noah, THOM MYNN Noah, and472

THOM ACM2 Noah in February 2019 are displayed in Fig. 11. To see their evolution more473

clearly, differences in 𝑣 winds which dominate the horizontal winds (Figs. 8 and 10), 𝜃, and 𝑞v474

between current and previous hours are also plotted in Fig. 12 and represented as Δ𝑣, Δ𝜃, and Δ𝑞v,475

respectively. The evolution of 𝜃 and 𝑞v in the three simulations are similar in both daytime and476

nighttime (Figs. 11b1–b3 and c1–c3), while the vertical mixing of thermodynamics is stronger477

in THOM YSU Noah in the daytime with Δ𝜃 of over 0.4 K beyond the boundary layer top (Fig.478

12b1). The higher 𝜃 and 𝑞v in THOM YSU Noah and THOM MYNN Noah, where 𝜃 and 𝑞v are479

respectively more than 303 K and 17 g kg−1 near the surface during the daytime (Figs. 12b1–b3480

and c1–c3), are consistent with the higher 𝜃e in THOM YSU Noah and THOM MYNN Noah than481

THOM ACM2 Noah (Figs. 9a1–c2).482

There are larger differences in wspd evolution among the three simulations especially in the483

nighttime (Figs. 11a1–a3). With the development of the boundary layer in the daytime (06–18484

LST), wspd increases and its vertical gradient within the boundary layer in THOM YSU Noah485

(from less than 3 m s−1 near the surface to less than 4 m s−1 at the boundary layer top at 16486

LST) is smaller than those in THOM MYNN Noah (from less than 3 m s−1 near the surface to487

∼4 m s−1 at the boundary layer top at 16 LST) and THOM ACM2 Noah (from less than 3 m488

s−1 near the surface to larger than 4 m s−1 at the boundary layer top at 16 LST) (Figs. 11a1–489

a3). It is consistent with the larger Δ𝑣 (over 1 m s−1) in THOM YSU Noah during 07–11 LST490

(Fig. 12a1), implying stronger vertical mixing of momentum within the boundary layer. After491

15 LST, northerly winds start to develop below 3 km AGL in THOM ACM2 Noah (Fig. 12a3),492

but it happens about 1 h later in THOM YSU Noah and 2-h later in THOM MYNN Noah (Figs.493

12a1 and a2). However, the development of northerly winds lasts longer in THOM YSU Noah,494

in which Δ𝑣 < −0.2 m s−1 and Δ𝑣 < −0.4 m s−1 can reach around 03 LST and beyond 00 LST495

respectively, whileΔ𝑣 < −0.2 m s−1 in THOM MYNN Noah and THOM ACM2 Noah do not exist496

after 23 LST (Figs. 12a1–a3). Therefore, stronger low-level jet develops in THOM YSU Noah497

with maximum wspd over 7 m s−1 between 0.5–1.75 km AGL during the nighttime (Fig. 11a1),498

which is consistent with the stronger precipitation during 04–08 UTC (23–03 LST) in the examined499
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region in THOM YSU Noah (Fig. 7c). The different precipitation peak time over the western500

Amazon Basin among the three simulations (Figs. 5c, f, and h) may be associated with the different501

developments of this low-level jet in the nighttime, which results from the different boundary layer502

mixing strength in the three PBL schemes. Martinez et al. (2022) also indicated that the choice of503

PBL schemes strongly impacts the development of low-level jets and subsequent precipitation in504

their three-month simulations over the Colombian Andes region at a 12-km grid spacing. Martinez505

et al. (2022) also revealed that the simulation using YSU scheme resulted in stronger low-level jets506

compared to the simulation using MYNN scheme. These findings underscore the importance of507

selecting appropriate PBL schemes to improve precipitation simulation and forecasting in complex508

terrain regions.509

Fig. 11. Time-height sections of averaged (a1–a3) horizontal wind speeds (wspd, m s−1), (b1–b3) potential

temperature (𝜃, K), and (c1–c3) specific humidity (𝑞v, g kg−1) in the region of (10°–8°S, 70°–68°W) in (a1–

c1) THOM YSU Noah, (a2–c2) THOM MYNN Noah, and (a3–c3) THOM ACM2 Noah in February 2019,

respectively. The black thick curves indicate averaged boundary layer height in each simulation. X-axis

represents the time in UTC outside the parentheses and in LST (Local Standard Time, here LST = UTC − 5 h in

the examined region) in the parentheses. Y-axis represents the height above ground level (km) in each panel.
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Fig. 12. As in Fig. 11 but for the differences in 𝑣 winds, potential temperature (𝜃), and specific humidity (𝑞v)

between current hour and previous hour, referred to as (a1–a3) Δ𝑣, (b1–b3) Δ𝜃, and (c1–c3) Δ𝑞v, respectively.
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The instantaneous time tendencies of 𝑣 winds, 𝜃, and 𝑞v due to PBL parameterization shown518

in Fig. 13 have similar patterns to the difference fields in Fig. 12 in the morning (06–12519

LST), but different patterns appear after 12 LST. It suggests that the accumulative effects of PBL520

parameterization start to influence the PBL processes in the afternoon. PBL parameterizations521

influence momentum, heat, moisture, and cloud fields, and there are also complex interactions522

among these fields. Differences in the strength of daytime boundary layer mixing and nighttime523

decay would affect the development of nocturnal low-level jets, transport of boundary layer moisture524

and momentum, low-level wind convergence, and final precipitation. The strength and distribution525

of precipitation would then have feedback to the low-level circulations, which then again affect526

precipitation. Thus, it is difficult to link the accumulative effects to the tendencies due to PBL527

parameterization, in particular the large-scale fields have been changed by the accumulative effects528

of PBL parameterization (Fig. 11). To examine the attribution of differences among the three529

simulations using different PBL schemes, especially the low-level jets in the nighttime, sensitivity530

experiments examining different terms (e.g., the local, non-local mixing, and boundary layer top531

entrainment terms) in the PBL schemes need to be performed. However, this aspect is outside532

the scope of this paper and has been thoroughly investigated in our subsequent publication (Hu533

et al. 2023), which indicated that the free-troposphere mixing in the presence of clouds appears534

to be the key factor in explaining the substantial difference in simulated precipitation between535

THOM YSU Noah and THOM ACM2 Noah.536
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Fig. 13. Time-height sections of averaged instantaneous tendencies due to PBL parameterization of (a1–a3)

𝑣 wind (10−5 m s−2), (b1–b3) potential temperature (10−5 K s−1), and (c1–c3) specific humidity (10−5 g kg−1

s−1) in the region of (10°–8°S, 70°–68°W) in (a1–c1) THOM YSU Noah, (a2–c2) THOM MYNN Noah, and

(a3–c3) THOM ACM2 Noah in February 2019, respectively. The black thick curves indicate averaged boundary

layer height in each simulation. X-axis represents the time in UTC outside the parentheses and in LST (Local

Standard Time, here LST = UTC − 5 h in the examined region) in the parentheses. Y-axis represents the height

above ground level (km) in each panel.
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4. Summary544

To help choose the best physics configuration of a WRF-based regional climate model for545

performing dynamic downscaling of future climate for the Peruvian Central Andes region at a546

convection-permitting resolution, twelve two-month-long simulations using the WRF model with547

different physics parameterization schemes are performed during January and February 2019 in548

the austral summer. The WRF model is run with a 15-km grid covering entire South America549

forced at the lateral boundaries by hourly ERA5 reanalysis data and a one-way nested 3-km grid550

covering the Peruvian central Andes region. The monthly and diurnal precipitation in the 3-km551

simulations are evaluated using rain gauge data in Peru and three higher-temporal-resolution global552

precipitation products, i.e., IMERG, CMORPH, and MSWEP. The major results are summarized553

as follows.554

(1) Through comparing the monthly precipitation of the three global precipitation datasets and555

simulations to the rain gauge data, MSWEP shows the smallest RMSE with a positive bias, and556

IMERG and CMORPH generally underestimate the monthly precipitation. All twelve simulations557

generally overestimate the precipitation, where the simulation using the Thompson microphysics558

scheme, ACM2 PBL scheme and Noah land surface model has the smallest mean bias and RMSE,559

and the simulation using Thompson aerosol-aware scheme, YSU PBL scheme and Noah land560

surface model has the largest mean bias and RMSE.561

(2) All simulations successfully capture the four precipitation hotspots associated with the pre-562

vailing winds and terrain features along the east slope of the Peruvian Central Andes. The simulated563

precipitation is the most sensitive to the PBL scheme, followed by the microphysics scheme, and is564

least sensitive to the LSM scheme. The simulated precipitation is generally stronger in the simula-565

tions using YSU PBL scheme than MYNN and ACM2 schemes. The simulation using Thompson566

scheme, ACM2 PBL scheme and Noah land surface model is the closest to the precipitation of567

IMERG and MSWEP.568

(3) Based on IMERG and CMORPH, diurnal precipitation peak time is mainly in the afternoon569

(∼14–19 LST) over the Peruvian Central Andes for terrain elevations higher than 1 km, in the early570

morning (∼0–6 LST) along the east slope of the Peruvian Central Andes for terrain elevations571

around 1 km, and between ∼14–19 LST over the western Amazon Basin to the east of the Peruvian572

Central Andes. All simulations successfully capture the precipitation peak time over the Peruvian573
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Central Andes and also along its east slope, while large differences exist in the precipitation peak574

time over the western Amazon Basin with about 4–8-h delay in simulations using YSU PBL575

scheme. The simulations using ACM2 PBL scheme have a smaller delay.576

(4) Different PBL schemes can lead to differences in the evolution of large-scale low-level wind577

fields, which influences the intensity and spatial distribution of low-level wind convergence. The 𝜃e578

within PBL is generally higher during the daytime in simulations using YSU and MYNN schemes579

than in simulations using ACM2 scheme, which is consistent with the stronger precipitation in580

simulations using YSU and MYNN schemes. Obvious differences exist in the development of581

low-level jets during nighttime due to accumulative effects of different PBL schemes. The stronger582

and longer-lasting low-level jets in simulation using YSU scheme are consistent with the delayed583

precipitation peak time over the western Amazon Basin.584

These results provide guidance on the optimal configuration of regional climate models for future585

climate dynamic downscaling for the Peruvian Central Andes region. Based on the testing results,586

the YSU PBL scheme produces the highest bias in simulated precipitation as well as the most587

delay in diurnal precipitation peak time. The ACM2 PBL scheme appears to be the preferred588

choice while MYNN PBL scheme also performs reasonably well. However, simulations over589

longer periods and spanning multiple years should be performed to make sure that such relative590

performances carry to the regional climate simulation application. We are currently running two591

configurations using Thompson microphysics and Noah LSM, combined with ACM2 and MYNN592

PBL schemes respectively, and the results will be reported in the future. The configuration with593

better performance will be used for future convection-permitting regional climate simulations for594

the Peruvian Central Andes region.595
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