Architecture
Tier 1 of the IIoT architecture consists of networked things, typically sensors and actuators, from the IIoT equipment, which use protocols such as Modbus, Zigbee, or proprietary protocols, to connect to an Edge Gateway. Tier 2 includes sensor data aggregation systems called Edge Gateways that provide functionality, such as pre-processing of the data, securing connectivity to cloud, using systems such as WebSockets, the event hub, and, even in some cases, edge analytics or fog computing. Tier 3 includes the cloud application built for IIoT using the microservices architecture, which are usually polyglot and inherently secure in nature using HTTPS/OAuth. Tier 3 also includes storage of sensor data using various database systems, such as time series databases or asset stores using backend data storage systems such as Cassandra or Postgres. In addition to the data storage, we analyze the data using various analytics, predictive or threshold-based or regression-based, to get more insights on the IIoT equipment.
Building on the Internet of things, the web of things is an architecture for the application layer of the Internet of things looking at the convergence of data from IoT devices into Web applications to create innovative use-cases. In order to program and control the flow of information in the Internet of things, a predicted architectural direction is being called BPM Everywhere which is a blending of traditional process management with process mining and special capabilities to automate the control of large numbers of coordinated devices.
The Internet of things requires huge scalability in the network space to handle the surge of devices. IETF 6LoWPAN would be used to connect devices to IP networks. With billions of devices being added to the Internet space, IPv6 will play a major role in handling the network layer scalability. IETF’s Constrained Application Protocol, ZeroMQ, and MQTT would provide lightweight data transport.