Fields of application

Automated trucks

Several companies are said to be testing automated technology in semi trucks. Otto, a self-driving trucking company that was acquired by Uber in August 2016, demonstrated their trucks on the highway before being acquired. In May 2017, San Francisco-based startup Embark announced a partnership with truck manufacturer Peterbilt to test and deploy automated technology in Peterbilt’s vehicles. Waymo has also said to be testing automated technology in trucks, however no timeline has been given for the project.
In March 2018, Starsky Robotics, the San Francisco-based automated truck company, completed a 7-mile (11 km) fully driverless trip in Florida without a single human in the truck. Starsky Robotics became the first player in the self-driving truck game to drive in fully automated mode on a public road without a person in the cab. In Europe, the truck Platooning is considered with the Safe Road Trains for the Environment approach.Vehicular automation also covers other kinds of vehicles such as Buses, Trains, Trucks. Lockheed Martin with funding from the U.S. Army developed an automated truck convoying system that uses a lead truck operated by a human driver with a number of trucks following autonomously. Developed as part of the Army’s Autonomous Mobility Applique System (AMAS), the system consists of an automated driving package that has been installed on more than nine types of vehicles and has completed more than 55,000 hours of driving at speeds up to 64 kilometres per hour (40 mph) as of 2014. As of 2017 the Army was planning to field 100-200 trucks as part of a rapid-fielding program.

Transport systems

In Europe, cities in Belgium, France, Italy and the UK are planning to operate transport systems for automated cars, and Germany, the Netherlands, and Spain have allowed public testing in traffic. In 2015, the UK launched public trials of the LUTZ Pathfinder automated pod in Milton Keynes. Beginning in summer 2015, the French government allowed PSA Peugeot-Citroen to make trials in real conditions in the Paris area. The experiments were planned to be extended to other cities such as Bordeaux and Strasbourg by 2016. The alliance between French companies THALES and Valeo (provider of the first self-parking car system that equips Audi and Mercedes premi) is testing its own system. New Zealand is planning to use automated vehicles for public transport in Tauranga and Christchurch.
In China, Baidu and King Long produce automated minibus, a vehicle with 14 seats, but without driving seat. With 100 vehicles produced, 2018 will be the first year with commercial automated service in China. Those minibuses should be at level 4, that is driverless in closed roads.

Potential advantages

Safety

Driving safety experts predict that once driverless technology has been fully developed, traffic collisions (and resulting deaths and injuries and costs), caused by human error, such as delayed reaction time, tailgating, rubbernecking, and other forms of distracted or aggressive driving should be substantially reduced. Consulting firm McKinsey & Company estimated that widespread use of autonomous vehicles could “eliminate 90% of all auto accidents in the United States, prevent up to US$190 billion in damages and health-costs annually and save thousands of lives.”
According to motorist website “TheDrive.com” operated by Time magazine, none of the driving safety experts they were able to contact were able to rank driving under an autopilot system at the time (2017) as having achieved a greater level of safety than traditional fully hands-on driving, so the degree to which these benefits asserted by proponents will manifest in practice cannot be assessed. Confounding factors that could reduce the net effect on safety may include unexpected interactions between humans and partly or fully automated vehicles, or between different types of vehicle system; complications at the boundaries of functionality at each automation level (such as handover when the vehicle reaches the limit of its capacity); the effect of the bugs and flaws that inevitably occur in complex interdependent software systems; sensor or data shortcomings; and successful compromise by malicious interveners.

Welfare

Automated cars could reduce labor costs; relieve travelers from driving and navigation chores, thereby replacing behind-the-wheel commuting hours with more time for leisure or work; and also would lift constraints on occupant ability to drive, distracted and texting while driving, intoxicated, prone to seizures, or otherwise impaired. For the young, the elderly, people with disabilities, and low-income citizens, automated cars could provide enhanced mobility. The removal of the steering wheel—along with the remaining driver interface and the requirement for any occupant to assume a forward-facing position—would give the interior of the cabin greater ergonomic flexibility. Large vehicles, such as motorhomes, would attain appreciably enhanced ease of use.