Práctica sobre suma de vectores

Lizeth-Gomez-Arellano¹

¹Instituto Tecnológico Superior Zacatecas Occidente

25 de febrero de 2019

INTRODUCCIÓN

En física, un vector es una herramienta geométrica utilizada para representar una magnitud física definida por su módulo, su dirección y sustenido. En matemáticas se define un vector como un elemento de un espacio vectorial, esta noción es más abstracta y para muchos espacios vectoriales no es posible representar sus vectores mediante el módulo, la longitud y la orientación. Son ejemplos de magnitud es vectoriales:

la velocidad con que se desplaza un móvil, ya que no queda definida tan sólo por su módulo, sino que se requiere indicar la dirección y el sentido;

la fuerza que actúa sobre un objeto, ya que su efecto depende, además de su intensidad o módulo, de la dirección en la que actúa; también, el desplazamiento de un objeto.

Desarrollo.

Inicialmente se debes recordar que el peso es una fuerza y para calcularlo es necesario multiplicar la masa de un cuerpo (kg) por la aceleración de la gravedad (9.8 m/s2). Si deseas generar una fuerza de 1.96 N es un sistema, deberás encontrar la masa que generaría un peso equivalente, despejando de la fórmula.

utilizamos

- * Mesa de fuerzas
- * Anillos de tension
- * Poleas de baja friccion
- * Un juego de masas de distintos valores

Solucion

$$\vec{f_1} = mg \cos 15^{\circ}i + mg \sin 15^{\circ}j$$

 $\vec{f_2} = 2mg \cos 120^{\circ}i + 2mg \sin 120^{\circ}j$

$$\vec{f}_T = mg (\cos 15^o + 2 \cos 120) i + mg (\sin 15^o + 2 \sin 120^o) j$$

$$\left| \vec{Ft} \right| = \sqrt{m^2 g^2 \cos 15 + 2 \cos 120^2 + m^2 g^2 \left(\sin 15 + 2 \sin 120^2 \right)}$$

= $mg \sqrt{\left(\cos 15 + 2 \cos 120 \right)^2 + \left(\sin 15 + 2 \sin 120 \right)^2}$ =1.9911
mg

$$\theta = \tan^{-1}\left(\frac{1.16 \cdot 10^{-3}}{3.963}\right) = 89.98$$

Conclusion.

Tanto el angulo como la magnitud resultante si contribuyo al equilibrio del sistema.