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Abstract

This study compares a dry-electroencephalography (EEG) approach
that does not require external shielding. This makes it amenable for a clin-
ical EEG-based brain-computer interface (BCI) platform. A BCI forges
a command relationship between the brain and a computer. We provide
a direct side-by-side reference comparison of the dry-EEG methodology
with a reference 64-channel wet-EEG approach. As the P300 is a robust
dual polarity waveform, spanning the signal space, it works well with
clinical-based BCI studies. In this study, six subjects perform a P300
auditory oddball stimulation task while we monitor the P300 with either
the dry- or the wet-EEG approach. The results demonstrate the efficacy
of the dry approach and we report that the approach produced all P300
components. Dry-EEG therefore performs similar to wet-EEG while pro-
viding for a less invasive, shorter set-up time and usability outside of cage
shielding, all vital for everyday, home-based clinical BCI applications. Key
differences for BCI researchers and future users of the approach are men-
tioned such that their signal processing analyses can be adjusted. Given
that we induce all three primary P300 components, we conclude that this
dry-EEG approach represents a highly viable P300 BCI option.

1 Introduction

Here we compare a relatively novel dry-electroencephalogram (EEG) approach
with a ”standard” wet-EEG approach via quantification of the P300 compo-
nents. Elecroencephalography is a non-invasive (harmless) brain imaging ap-
proach to record and display brain activity via the use of electrodes placed
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on the scalp, and with high temporal precision and limited spatial resolution.
For standard wet-EEG approaches to work effectively, such approaches rely on
conductive electrolytic gel between the scalp and the electrodes to maximise
conductivity. Recently, dry-EEG has been developed for BCI by applying pre-
amplified eletrodes that do not require the use of external conductive mediums
and result in a shorter set-up time and a more comfortable user experience -
and therefore could be brought into the home for patient therapies for Spinal
Cord Injury (SCI) or late stage Motor Neurone Disease (MND). Although the
particular dry-EEG approach we examine here has already been utilised, for
example, in a mobile environment [4, 3, 28], with synchronous Steady State
Visual Evoked Potentials [24, 25], with asynchronous Motor Imagery EEG [26]
and during sleep [31] whether or not it is comparable to wet-EEG-based P300
detection remains an open question. This is because experimenters need to be
made aware of any vital relative spatial, timing and amplitude differences to
adjust their signal processing strategies. An extremely critical application of
the P300 component relates to implemention in a clinical P300 BCI platform
[18, 40, 16]. It is vital that the present comparison be made to ascertain whether
or not such an implementation is feasible.

The P300 is both an endogenous (’automatic’, P3a component) and also
attention-related (P3b component) brain-induced physiological response and
therefore has seen extremely widespread use across psychology, cognitive neu-
roscience and BCI (computer science; engineering). The P300 occurs in all
subjects provided only that the subjects attend to the experimental task. Upon
presentation of a recurring stimulus (baseline condition) interleaved by another,
less frequent, odd stimulus (odd condition), subjects show occurrence of the
component when the odd stimulus is presented. Providing that the subject is
aware enough to follow the instructions and to convey attention to the stimulus,
the P300 will reliably occur [10]. In other words, the P300 is very robust, is
amenable to patient use and will inform the experimenter with regard to the
target selected by the subjects thus lending itself to BCI application(s); for
example, virtual keyboard word processors, brain-controlled 2-D cursor move-
ment on a computer screen, computer icon selection and wheelchair control for
communication for those living with SCI or MND [40, 16]. The P300 waveform
is characterized by: 1) a distinct negative amplitude; and then 2) a distinct
positive-amplitude deflection in voltage. The P300 has been utilized in an ex-
tremely vast number of wet-EEG experimental studies, e.g. [37, 41, 33, 34]. The
first example of an oddball P300 paradigm to specifically investigate the P300
wave is [41]. Results of the baseline condition demonstrate the presence of N1
and P2, sensory evoked potentials representing a pre-attentive stimulus detec-
tion, recurring at the latency of 80-100 and 140-190 milliseconds, respectively,
and with no presence of the P300 wave. P3a typically locates to a relatively
greater extent in the frontal lobe [23]. Additionally, whereas P3a occurs when
subjects do not actively engage in a specific task, P3b will only occur if subjects
actively focus or attend to the experiment [41]. This suggests a more physiolog-
ical nature of the first P3a component over a more distinct task-related nature
of the later P3b component. An extremely significant application of the P300
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component relates to utilizing this waveform within a BCI platform [18, 40, 39].
Fig. 1 demonstrates that the dry-EEG approach used in this study is compliant
with the 10-20 EEG reference standard, an internationally recognised approach
to denote the location of the electrodes on the scalp / brain tissue (as adapted
from [28]).

Figure 1: 64-channel sensor montage for the dry-EEG approach, coregistration
with the MNI “Colin27” brain. Average sensor locations are obtained by aver-
aging 3-D digitized (ELPOS, Zebris, Medical GmbH) electrode locations from
ten individuals. Electrode labels are assigned based on the nearest neighbour
mapping to the standard 10/5 montage. Nas, LPA and RPA denote nasion
and left/right preauricular fiducials. *Only the 16 sensors shown in red were
included in the present hardware configuration. Only 16 sensors were used to
make the approach as cost-effective as possible and therefore amenable to po-
tential clinical use.

The P300 component has been under use for decades to develop BCI suitable
for patients that have low or no residual control over voluntary movements, such
as high-level SCI or late-stage MND [18, 40]. Upon inducing the component as a
neural signature of a chosen target, the subject selects a certain item in a group
of other non-target items, for example, letters for spelling. This then enables the
subject to spell sequentially his/her own words and provides for an enhancement
in their degree of independence for those living with SCI or MND.One inherent
limitation to many of these applications is that of being bound to an unnatural
environment - the ”static” and experimentally-shielded wet-EEG laboratory.
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The wet-EEG equipment imposes some specific requirements to obtain optimal
(or even useable) signal quality. Electrolytic gel, a shielded room (or Faraday
cage), preparation of the skin, and a tethered connection to the scalp mounted
apparatus that are part of the set-up imposes a limit to what and where BCI
based on the common wet-EEG can be applied.

1.1 The Dry, Mobile and Wireless EEG approach: a New
Frontier?

A new technical development that circumvents all of the aforementioned prob-
lems has emerged over the past several years: the advent of dry-, mobile- and
wireless-EEG approaches. These technical modifications provide for a reduction
in the preparation time as well as representing a less invasive procedure (as no
preparation of the scalp is required) and the potential for home-based therapy.
The use of dry electrodes can also substantially increase the duration of the BCI
session, as the drying up or leaking of the electrolytic gel is no longer an issue
[14]. Another problem arises with regard to the bridging of the electrodes that
typically occurs when the electrolytic gel spreads between close electrodes thus
mildly ”shorting” them to one another from an electrical stand point and thereby
distorting the BCI signals [1]. These technical hurdles can all be overcome via
the use of relatively novel dry-EEG approaches. If these same dry-EEG ap-
proaches are indeed as sensitive and reliable as wet-EEG approaches, then such
approaches could improve the feasibility of EEG based BCI for the end user (in
this case the SCI or MND patient) and/or the primary caregiver(s) both via
ease of use and taking them out of the laboratory setting and into the home.
Wireless approaches also add certain novel options to the application of EEG
approaches. With the correct amplification and careful internal signal shielding
(or shielding that is inherent to the EEG cap itself), dry-EEG recordings can
now be collected outdoors which would be useful for brain-controlled wheelchair
navigation. In one particular study that provides support for this idea, Debener
[6] use an in-house built non-commercial dry and mobile-EEG platform to as-
sess an auditory oddball task while subjects are naturally walking outdoors and
following a particular route. No specific instruction is given except the request
to mentally keep count of the relatively rare (odd) auditory tone. The experi-
mental results demonstrate that high quality data can be obtained even in such
an everyday environment. Amplification and adequate artifact correction can
also aid in minimizing movement related noise in mobile EEG approaches [17].
Nevertheless, we still need to know how these signals directly compare directly
to wet-EEG such that the appropriate signal processing adjustments can be
made or truly optimised. Brain areas active during spatial navigation, obstacle
avoidance, attention allocation and many more can be investigated in every-
day environments and, again, non-invasively (harmlessly). Such experimental
environments could also play a key role to develop BCI that will be more com-
parable to a natural environment as well as being specifically designed for a
mobile individual - as opposed to those BCI platforms that acquire information
/ carry out experiments in the common static laboratory-based setting [25]. Ex-
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periments like the one performed by Iturrate [13] could now be used to not only
virtually but to physically navigate a patient wheelchair through an everyday
environment, thus restoring some of the freedom lost by the patient due to b
neurological damage. A study by Cao et al. [2] employs a hybrid BCI with both
motor imagery (MI) and steady-state visually evoked potentials (SSVEP) and
the authors fuse these to enable subjects to control both the direction and speed
of their wheelchair. Motor imagery represents the active rehearsal of an internal
representation of a motor action [7] and steady-tate visually evoked potentials
(SSVEP) represent the electrical (brain cell) physiological responses that oc-
cur when looking at or attending to a visual stimulus of a specific, typically
visual-based, flicker frequency [43]. It is clear that the development of these ap-
proaches has a very important target clinical setting and this is owing to the need
to overcome the limitations of the relatively cumbersome wet- and static-EEG
approaches. Given that the classic wet- and static-EEG technique provides for
an extremely well-established and accepted platform both in terms of reliability
and fidelity of recording, wet-EEG constitutes the suitable approach to examine
the efficacy of novel dry-EEG approaches and to examine whether or not the
quality of the recordings is of a sufficient scientific standard. Yet comparing such
EEG approaches poses other major challenges: the components of EEG record-
ings tend to vary not only across different subjects and tasks but also within the
same subject when recorded on different days or under different experimental
conditions [39]. In other words, EEG is nonstationary [20]. Here we present
results for one commercial device for dry-, wireless- and mobile-EEG. The dry-
EEG hardware used here consists of 16 sensors and a communication link that
additionally provides for wireless recording. We compare a dry-EEG approach
developed by Cognionics Inc. (San Diego, USA) HD-72 model (Fig 2) with a 64
channel wet-EEG set-up by ANT Neuro (Enschede, Netherlands) to investigate
the quality and reliability of the recordings of the former approach.To test the
dry-EEG approach, we opt for the serial method (sequential testing across the
two approaches) while wearing the dry- or the wet-EEG approach and across the
same subjects. This is owing to the fact that we need to record from the same
sensor (dry-EEG) or electrode (wet-EEG) for the oddball task to quantify the
P300 waveform. The experimental task we employ is the classic auditory odd-
ball paradigm [38, 19]. The auditory (sound) paradigm is highly reliable with
regard to inducing the P300 waveform. We use only 16 channels because the
cost is more reasonable for clinical application - approximately in line with the
cost of an electric wheelchair - while still maintaining adequate skull coverage.
We report that the P300 was comparable across the two approaches but with
important differences. Specifically, there is a latency difference in the relative
onset of the 3 primary components (N1, P3a and P3b) upon which the vast
majority of prior EEG BCI studies rely [4, 10, 18, 40]. Furthermore, the N1 is
more negative-going and the Pz topography is relatively more frontally situated
for the P3a as compared to the wet-EEG approach.
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Figure 2: The dry-EEG system HD-72 model developed by Cognionics Inc. (San
Diego, USA).

2 Experimental Section

In this section we describe the nature of our subject sample of six participants
and define the two EEG approaches that we compare. We detail the specifics
of auditory stimuli and the experimental procedure we use to elicit the oddball
effect.

2.1 Subjects

We examine six healthy subjects (3 males and 3 females) for the two experiments
(mean age: 27.6 years, s2= 8.18; range: 22-43). Exclusion criteria include
past psychiatric disorders such as Major Depressive Disorder, Schizophrenia
and Dementia as all are reported to affect the normal characteristics of the
P300 [45]. Subjects report to have no known psychiatric history and to have
well preserved auditory, visual and cognitive function. To exclude any age-
related hearing impairment [12], subjects over the age of 45 did not participate
in the present study. We also obtain Handedness information via completion of
the Edinburgh Handedness Inventory [30]. Subject information is summarized
in Table I.
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Subject Sex Age Handedness Excluded Channels
1 M 31 Right P4-Oz-O2
2 M 22 Left O1-O2-P4
3 F 23 Right None
4 F 23 Right None
5 M 43 Right C3
6 F 24 Right O1-P3-Pz

Table 1: Sex, age, handedness and the channels we exclude for all subjects we
include in the present analyses

2.2 Evaluation systems

The Cognionics Inc. conductive coating material on the sensors is biocompat-
ible and resistant to water corrosion as skin sweat from the scalp can arise
during recording – especially important factors within a mobile environment.
For these reasons, most metals are unsuitable, for these would require appli-
cation of gel to maximize conductivity or might undergo oxidation and induce
allergic reaction [14]. Owing to the higher electrode impedances that relates
to the lack of skin preparation and gel use [14, 1, 6], dry electrodes require
in-situ amplification to ensure high levels of Information Transfer Rate (ITR or
bits/s), an evaluation measurement in BCI that represents the precise amount
of information transferred over time [44]. Additionally, the electrodes of this
system have in-situ active shielding and noise cancellation and these provide
for reasonable, low-noise recordings also ensuring adequate signal-to-noise ratio
(SNR) is maintained during the recording sessions. The dry-EEG system ex-
cludes artefact and noise beyond 50/60Hz - as this range originates mainly from
external electrical noise and movement related noise (or motion artefact). The
system we test here has 4 drypad sensors along the frontal pole (or toward the
front of the brain) in the region of the subject’s forehead (F8, Fp2, Fp1 and
F7 according to the 10-20 universal reference system standard). The 12 flex
sensors (or the sensors that pass through the hair) are located over the relevant
areas in positions F4, Fz, F3, C4, Cz, C3, P4, Pz, P3, O2, Oz and O1. The
even numbers correspond to the right side (hemisphere) of the brain while the
odd numbers correspond to the left side (hemisphere of the brain) (Fig 1). The
reference site is set on the bilateral mastoid bones and the sampling rate is set to
500 Hz. The reference wet-EEG system we use has 64 channels and mounts on
customized WaveGuard caps, with electrode positions also in accordance with
the 10-20 reference standard. The latter system uses standard passive wet-EEG
electrodes that have no inner amplification or shielding and these connect to an
amplifier located inside a shielded recording room. The sampling rate of the
ANT Neuro system is also 500 Hz.
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2.3 Experimental conditions

We test the subjects across two sessions while using either the dry- or the wet-
EEG approach and with the identical experimental task. We also test subjects
at the same time of day in order to control for the physiological oscillation of the
P300 [36] and on separate days for dry- and wet-EEG to avoid habituation to the
task on the same testing day [32, 5]. However, the chinrest and shielded room
are only used when testing with the wet-EEG and head movement is relatively
unrestrained with dry-EEG In the session with the dry-EEG approach, the room
is unshielded, and other electronic devices are present. This configuration was
used to ensure higher ecological validity in the potential clinical, home-based
use of the dry-EEG system. Stimuli presentation and data acquisition occur on
separate computers: one computer runs the stimuli program to preserve pre-
sentation timing and a second computer to receive the wireless signal from the
device and to run proprietary data acquisition software. The data acquisition
software provides for our direct observation of the raw dry-EEG data, channel
selection and the impedance spectrum to assist initial set-up and data quality
assessment. For all of the sessions, impedance values - defined as the measure-
ment of adequate contact between the EEG sensors and the scalp - are checked
prior to the onset of the experiment and we ensure that these are lower than
20 Ω (considering the relatively higher impedance of dry-EEG sensors), and we
lower these impedance values by applying very slight pressure to the backs of
the sensors for a few seconds, wiggling the sensors left or right, and/or slightly
tightening the cap to allow the sensors to better adhere to the scalp. In the
wet-EEG approach condition, subjects are sat in a chair in a shielded room and
we use one screen and two speakers necessary for presentation of the auditory
tones within the testing environment. Subjects heads are stable via a chin-
rest and further instructions are given with regard to inhibiting all unnecessary
and natural movements. For every session, impedance values are checked to be
between 0-10 k Ω according to the wet-EEG approach guidelines [11, 21] and
we lower these same impedance values via preparation of the skin with blunt
needles. We then apply electrolytic gel.

2.4 Stimuli

We deliver two audio stimuli tones via the same speaker set-up for both condi-
tions. One tone we define as ”standard” has a frequency of 2460 Hz whereas
the other we define as ”deviant” (i.e. oddball) is set to a frequency of 2495 Hz.
Presentation of the two tones is set to be completely pseudorandom across all
trials and subjects. To obtain an oddball paradigm, the probability of occur-
rence of the deviant tone is set at 25% of the 200 overall trials (or 50 trials) with
a complementary 75% occurrence of the standard tone (or 150 trials). Also, the
first four trials are set to run the standard tone to enable the subjects to easily
identify the frequent (standard) over the infrequent (deviant or oddball) tone
from the outset of the experiment. Tones are present at a rate of one every
1000ms and each tone is present for 500ms.
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2.5 Experimental procedure and analysis

We instruct subjects to internally count the less frequent, or deviant, higher
pitched tone and to report this value back to the experimenter via a verbal
report once the experimental session is complete. All the subjects report the
correct number of odd stimuli and this demonstrates a high level of compliance
and focus throughout the task across both experimental dry- and wet-EEG set-
ups. We carry out data analysis for both the dry- and wet-EEG approaches via
BESA Research software (Besa, Grafelfing, Germany) and maintain the same
analyses procedure for the datasets of both the dry- and wet-EEG approaches.
We also apply an on-line artefact correction for eyeblinks and bandpass filter
the datasets (1.6 Hz - 40 Hz) for both dry- and wet-EEG approaches to exclude
high frequency noise not originating from brain activity. We include all channels
in the analysis for the wet-EEG approach and certain channels are excluded
in the datasets obtained from the dry-EEG approach owing to the relatively
higher level of external noise as detected during the recordings (Table 1). A
re-referencing is required for the data obtained through the wet-EEG approach
and reference points are set to be the average across the two mastoid bones -
identical to the dry-EEG experiment. Baseline correction is -100ms to 0ms for
both approaches and epochs and we extract at different time points for the two
conditions while maintaining the same range across the two approaches. This
difference is owing to the 48ms latency difference across the dry- and wet-EEG
approaches. The epochs we extract for the wet approach are at 200-250ms for
an early component (P3a) and at 320-400ms for a later component (P3b). For
the dry-EEG experiment, we extract epochs at 150-200ms and 250-330ms for
the P3a and the P3b component, respectively. Channel(s) exclusion and the
different number of electrodes across the two set-ups are not a major issue in
the present study as the channel focus of our auditory analysis is Cz, at the
vertex (or top) of the skull for both the dry- and the wet-EEG approaches
(refer to Fig. 1 and 3).

3 Results and Discussion

In this section we evaluate results for the mean amplitude of the early and late
components of the P300 waveform in the two conditions defined as standard
and deviant (oddball). We also investigate differences between the two EEG
approaches we use here to report the occurrence of the different components.

3.1 Between conditions

For every subject, we extract both the early P3a and late P3b components of
the P300. After averaging these across subjects, we then compare the mean am-
plitude of the P3a and P3b components for the standard and deviant (oddball)
condition. Paired sample t-tests - where t is the value used in estimating the pop-
ulation mean from a sampling distribution of sample means - are carried out to
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Figure 3: Topographic images that depict the scalp localizations for the auditory
oddball task for the wet- (top panels) and the dry-EEG approaches (bottom
panels) - note that the peaks at the Cz sensor for the P3a (left panel) and
the P3b (right panel) components. Critically, the P3a component (left bottom
panel) for the dry approach is relatively more frontal-situated (toward the nose)
as compared to the wet EEG approach which instead situated at the very top
or apex of the brain (right top panel). The P3b occurs over the Cz electrode
at the top / apex and mid-line of the brain (top and bottom right panels) for
both the dry- and the we-EEG approaches.

compare the mean amplitudes of the standard and the deviant stimuli with both
approaches to examine the fidelity of the dry-EEG approach to detect the odd-
ball effect. As one would predict, when using the wet-EEG approach, a highly
significant difference is reported across the standard (μ= -0.63; s2= 0.44) and
the deviant tone (μ= -0.12; s2= 1.00) of the P3b or late component, t(5)=8.28,
p¡0.001. However, we report a non-significant difference when comparing the
mean amplitudes of the standard (μ= 1.42; s2= 1.00) and deviant (oddball)
tone (μ= 2.32; s2= 1.22) for the first earlier component, or P3a, t(5)=-1.203,
p=0.254. We report highly similar results for the dry-EEG approach. There is a
significant difference between the standard (μ= -0.48; s2= 0.79) and deviant (μ=
0.83; s2= 0.71) condition in the later component or P3b component, t(5)=6.19,
p=0.003. There is no significant difference between standard (μ= 0.42; s2=
0.71) and deviant (μ= 0.86; s2= 3.21) in the earlier component or P3a compo-
nent, t(5)=1.321, p=0.213. Inspection of the timecourse plots demonstrates the
prominent early occurrence of the same negative-amplitude component, or N1,
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and the two later positive-amplitude components, P3a and P3b and across both
approaches we examine here. Independent plots that compare the waveforms
of the deviant and standard conditions for the two components are depicted in
Fig. 4 (wet-EEG) and Fig. 5 (dry-EEG).

Figure 4: The P300 waveforms for the wet-EEG approach. This figure depicts
the waveforms that the N1, P3a (top) and the P3b (bottom) components for the
Cz channel across the two conditions we examine in the auditory oddball task.
Mean amplitudes of the deviant (oddball) condition are in red. The latency,
displayed in black, is 229ms for the P3a and 371ms for the P3b components.

3.2 Comparison across conditions

Effect sizes are calculated for both dry- and wet-EEG approaches by subtract-
ing mean amplitude values of standard and deviant (oddball) conditions and a
paired sample t-test is performed to ultimately compare the results across the
two approaches. When analyzing the earlier P3a component, no difference is
reported between effect sizes of the wet-EEG approach (μ= -0.90; s2= 1.41)
and the dry-EEG approach (μ= -0.43; s2= 2.80); t(5)=-0.403, p=0.704. Simi-
larly, there is no significant difference between the effect sizes of the wet-EEG
approach (μ= -0.50; s2= 1.08) and the dry-EEG approach (μ= -1.32; s2= 0.57)
for the later P3b component; t(5)=1.258, p=0.264. A direct temporal (time)
comparison of the waveform shapes obtained through the two approaches is
reported in Fig. 6.

3.3 Discussion

The present results provide evidence for the successful utilization of the dry-
EEG approach to reliably detect the the different electrophysiological (brain
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Figure 5: P300 waveforms for the dry-EEG approach. This figure depicts the
N1, P3a (top) and the P3b (bottom) components for the Cz channel across the
two conditions we examine in the auditory oddball task. Mean amplitudes of
the deviant (oddball) condition are in red. The latency, displayed in black, is
176.7ms for the P3a and 263ms for the P3b components.

cell or neuronal)-based primary components of the P300 EEG waveform (the
N1, P3a and P3b). The shape of the waveforms and the scalp distributions we
report in the present study correspond to those of several early wet-EEG studies
[37, 12, 36]. However, the comparison of the waveforms of the deviant (odd)
condition obtained by the reference wet-EEG approach and the relatively novel
dry-EEG approach in Fig. 6 demonstrate a very obvious timing difference in
detecting the three key components (N1, P3a, and P3b). For both approaches,
the statistical tests demonstrate a significant difference in the amplitudes of the
waves across the two conditions (or, for the deviant (oddball) as compared to
the standard auditory tone). Critically, Fig. 6 shows a very substantial la-
tency difference in the onset of each of the three components with an overall
earlier occurrence in the onset of the P3a and P3b with the dry-EEG approach
(176.7ms; 263.3ms) as compared to the wet approach (229ms; 371ms) – a dif-
ference of vast timing difference of 48ms across the two dry- and wet-EEG
approaches (based on the N1 component). Notably, variations of the latency of
the P300 are linked to several factors including the nature of the stimuli and
the task and individual differences [10]. In particular, the P300 latency is re-
ported to increase according with the difficulty of detection and evaluation of
the odd from the standard stimulus [35] and factors such as age [9] and men-
tal fatigue [22]. Given the wet-EEG approach is always tested several weeks
after the dry-EEG approach – the latency difference reported here cannot be
argued to be the result of mental fatigue across the sequential testing days of
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Figure 6: Deviant waveshapes across the dry- and wet-EEG approaches. The
data demonstrate the P300 for the deviant (oddball) condition as registered
with the dry-EEG (thin line) and the wet-EEG approach (bold line) and the
clear evidence for the N1, P3a and P3b components. We report a ˜48ms latency
difference across the two approaches, with the dry approach exhibiting the rel-
atively shorted onset of the N1, P3a and P3b. The N1 peak occurs at ˜120ms
and ˜170ms for the dry- and wet-EEG approaches, respectively. The dry-EEG
N1 also has a relatively more negative amplitude peak value as compared to the
wet-EEG approach.

the two approaches.Yet there are also other key differences: 1) a greater effect
size is reported for the P3a component when using the dry-EEG as compared
to the wet-EEG approach; 2) for the P3b component, a greater effect size is
reported when using the wet- as compared to the dry-EEG approach. It is
crucial to point out that the experimental conditions we employ across the two
approaches differ quite dramatically from one another (refer to Methods). The
chinrest and shielded room are only used when testing with the wet-EEG and
head movement is relatively unrestrained with dry-EEG; 3) the N1 component
is more negative-amplitude for the dry- as compared to the wet-EEG approach;
and 4) the P3a component is topographically more frontal situated (or toward
the nose) for the dry-EEG as compared to the wet-EEG approach.The aim of
the present study is to investigate the fidelity of the dry-EEG approach in a
relatively less constrained research environment – one in which head movement
is unrestrained – and this can be much more informative with regard to the
specific possible uses of this particular commercially-available dry- and mobile-
EEG approach for future clinical purposes. In an everyday home environment
the head must be free to move. Our analyses provides support for the idea
that the dry-EEG approach is accurate enough to detect an oddball effect in
the six subjects tested and with only a total of 200 trials per subject - and
yet this approach still produces P300 waveforms. Moreover, it is worthwhile
to note that none of the subjects report any pain and a substantial reduction
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in discomfort when using the dry-EEG approach and describe the electrodes
as being ”hardly noticeable”. In contrast, although bearable, the scrubbing
procedure of the wet-EEG is reported to be ”generally unpleasant” by the ma-
jority of these same subjects. The dry-EEG headset is very straightforward to
set-up ( 5 minutes set-up time) and can be easily adjusted to different head
sizes/shapes. The wet-EEG approach typically takes between 15 - 20 minutes
to set-up and requires the additional blunted needle preparation (preparation of
the skin). These considerations become particularly important when considering
the practical usability of the dry- and mobile-EEG approach for potential long-
term domestic clinical application(s) – and would perhaps even enable set-up
by home-based caregivers.The latency difference is critical for BCI applications
using sliding windows for data analysis [42]. A sliding window is a approach for
controlling transmitted data packets between two network computers in which
highly reliable and sequential delivery is required. The fact that the P3a is
relatively more anteriorly situated (or toward the nose) in the frontal lobe is
also critical for proper electrode selection and placement/data collection for the
above BCI applications. Finally, the N1 component is much more negative-
amplitude for dry-EEG as compared to the wet-EEG. This is also important for
the detection thresholds used for P300 brain-computer applications. For all of
these reasons, we are of the opinion that the differences observed in the present
experiment are as noteworthy as the similarities and need to be disseminated
to all those working with this particular approach – and also to those of using
other dry- or wet/dry- electrode EEG approaches on-market (e.g. g.Sahara ;
Emotiv EPOC; QUASAR; Biosemi; B-Alert, e.g. [29, 15, 8, 27]).

4 Conclusions

This study compares a dry-EEG approach with a standard wet-EEG approach
for dry-EEG suitable for clinical therapies for SCI and MND. We demonstrate
that dry-EEG quantifies expected areas of EEG similarity and divergence be-
tween the two methodologies on exemplar reference systems and could therefore
constitute a viable option for future BCI research. In the present study, we re-
port a difference of 2.79 μV in the amplitude of the early P3a component and
a 0.25 μV difference in the amplitude of the P3b component between the two
approaches (Fig. 4). Additionally, a difference of 52.3ms and 107.7ms is found
in the timing of the P3a and P3b components respectively (Fig. 4). The appli-
cation of the established wet-EEG approaches for this purpose has been limited
by the specific set-up requirements needed for the correct use of the approach
and their inherent immobility. Although necessary in a dedicated research en-
vironment, the shielded room, cables and a tethered connection to the scalp
mounted apparatus, electrolytic gels and skin preparation diminish the usability
of wet-EEG approaches in everyday or clinical applications. Dry, pre-amplified
electrodes can overcome these limitations, and such dry-EEG technology clearly
extend well beyond the boundary of the laboratory environment and into a do-
mestic environment. All three primary P300 components are present using this

14



dry-EEG approach. Future experiments will test this approach with P300- and
SSVEP-based spellers and robotic actuator deployment to establish its suitabil-
ity for effective BCI utilization in SCI and MND.
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[19] ÜMMÜHAN İŞOĞLU-ALKAÇ, KARINA KEDZIOR, SACİT
KARAMÜRSEL, and NUMAN ERMUTLU. EVENT-RELATED
POTENTIALS DURING AUDITORY ODDBALL AND COMBINED
AUDITORY ODDBALL–VISUAL PARADIGMS. International Journal
of Neuroscience, 117(4):487–506, jan 2007.

[20] Alexander Ya. Kaplan, Andrew A. Fingelkurts, Alexander A. Fingelkurts,
Sergei V. Borisov, and Boris S. Darkhovsky. Nonstationary nature of the
brain activity as revealed by EEG/MEG: Methodological practical and
conceptual challenges. Signal Processing, 85(11):2190–2212, nov 2005.

[21] Emily S. Kappenman and Steven J. Luck. The effects of electrode
impedance on data quality and statistical significance in ERP recordings.
Psychophysiology, mar 2010.

[22] Yumiko Kaseda, ChunHui Jiang, Katsumi Kurokawa, Yasuyo Mimori, and
Shigenobu Nakamura. Objective evaluation of fatigue by event-related po-
tentials. Journal of the Neurological Sciences, 158(1):96–100, jun 1998.

17



[23] Robert T Knight. Decreased response to novel stimuli after prefrontal le-
sions in man. Electroencephalography and Clinical Neurophysiology/Evoked
Potentials Section, 59(1):9–20, feb 1984.

[24] Yuan-Pin Lin, Yijun Wang, and Tzyy-Ping Jung. A mobile SSVEP-based
brain-computer interface for freely moving humans: The robustness of
canonical correlation analysis to motion artifacts. In 2013 35th Annual
International Conference of the IEEE Engineering in Medicine and Biol-
ogy Society (EMBC). IEEE, jul 2013.

[25] Yuan-Pin Lin, Yijun Wang, Chun-Shu Wei, and Tzyy-Ping Jung. Assess-
ing the quality of steady-state visual-evoked potentials for moving humans
using a mobile electroencephalogram headset. Frontiers in Human Neuro-
science, 8, mar 2014.

[26] Giuseppe Lisi, Masashi Hamaya, Tomoyuki Noda, and Jun Morimoto. Dry-
wireless EEG and asynchronous adaptive feature extraction towards a plug-
and-play co-adaptive brain robot interface. In 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, may 2016.

[27] Andrew Melnik, Petr Legkov, Krzysztof Izdebski, Silke M. Kärcher,
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