1.      Highway Safety Improvement Program. (n.d.). Retrieved from https://safety.fhwa.dot.gov/hsip/resources/fhwasa09029/fhwasa09029.pdf
2.      New Yorkers and Their Cars. (n.d.). Retrieved December 01, 2020, from https://edc.nyc/article/new-yorkers-and-their-cars
3.      VISION ZERO YEAR FOUR REPORT. (n.d.). Retrieved from https://www1.nyc.gov/assets/visionzero/downloads/pdf/vision-zero-year-4-report.pdf
4.      VISION ZERO YEAR SIX REPORT. (n.d.). Retrieved from www1.nyc.gov/assets/visionzero/downloads/pdf/vision-zero-year-6-report.pdf
5.      "Table B08201. Household Size by Vehicles Available – Universe: Households". 2009 American Community Survey. United States Census Bureau. Archived from the original on February 11, 2020.
6.      Safety Performance Function Development Guide: Developing JurisdictionSpecific SPFs. (n.d.). Retrieved from https://safety.fhwa.dot.gov/rsdp/downloads/spf_development_guide_final.pdf
7.      Frank, E. (n.d.). The WEKA Workbench. Retrieved from https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf
8.      Vala, K. (2019, March 03). Probabilistic Graphical Models: Bayesian Networks. Retrieved December 01, 2020, from https://towardsdatascience.com/probabilistic-graphical-models-bayesian-networks-d8f0d51b14bf
9.      (n.d.). Retrieved December 01, 2020, from https://www.saedsayad.com/decision_tree.htm
10.  Abhishek SharmaHe is a data science aficionado. (2020, May 12). Decision Tree vs. Random Forest - Which Algorithm Should You Use? Retrieved December 01, 2020, from https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorithm/
11.  D, R. (2019, April 02). K-Nearest Neighbors. Retrieved December 01, 2020, from https://medium.com/@rndayala/k-nearest-neighbors-a76d0831bab0
12.  F-Score. (2019, May 17). Retrieved December 01, 2020, from https://deepai.org/machine-learning-glossary-and-terms/f-score
13.  Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates. (n.d.). Retrieved December 01, 2020, from https://www.tandfonline.com/doi/abs/10.1080/19439962.2016.1152338
14.  C. ACI and C. OZDEN, “Predicting the Severity of Motor Vehicle Accident Injuries in Adana-Turkey Using Machine Learning Methods and Detailed Meteorological Data”, IJISAE, vol. 6, no. 1, pp. 72-79, Mar. 2018.
15.  Theofilatos, A., Chen, C., & Antoniou, C. (2019). Comparing Machine Learning and Deep Learning Methods for Real-Time Crash Prediction. Transportation Research Record, 2673(8), 169–178. https://doi.org/10.1177/0361198119841571
16.  Roy, A., Hossain, M., & Muromachi, Y. (2018). Enhancing the Prediction Performance of Real-Time Crash Prediction Models: A Cell Transmission-Dynamic Bayesian Network Approach. Transportation Research Record, 2672(38), 58–68. https://doi.org/10.1177/0361198118797802
17.  Alajali, Walaa; Zhou, Wei; Wen, Sheng; Wang, Yu. 2018. "Intersection Traffic Prediction Using Decision Tree Models." Symmetry 10, no. 9: 386.
18.  Cuiping Zhang, Xuedong Yan, Lu Ma, Meiwu An, "Crash Prediction and Risk Evaluation Based on Traffic Analysis Zones", Mathematical Problems in Engineering, vol. 2014, Article ID 987978, 9 pages, 2014. https://doi.org/10.1155/2014/987978
19.  Iranitalab, Amirfarrokh, and Aemal Khattak. “Comparison of Four Statistical and Machine Learning Methods for Crash Severity Prediction.” Accident Analysis & Prevention, Pergamon, 6 Sept. 2017, www.sciencedirect.com/science/article/pii/S0001457517302865?via=ihub.
20.  Lee, J., Abdel-Aty, M., & Cai, Q. (2017, March 21). Intersection crash prediction modeling with macro-level data from various geographic units. Retrieved December 01, 2020, from https://www.sciencedirect.com/science/article/pii/S0001457517301070
21.  Huang, H., Song, B., Xu, P., Zeng, Q., Lee, J., & Abdel-Aty, M. (2016, June 22). Macro and micro models for zonal crash prediction with application in hot zones identification. Retrieved December 01, 2020, from https://www.sciencedirect.com/science/article/pii/S0966692316303222?casa_token=Pab7jEcIz7MAAAAA%3AYFUfkOEa9tN3NVOoljxtiuHqaQx7Lp3APCveD6hFU3VcRLIPshovL0wmznxNAiW25mIFvw
22.  Chen, C., Zhang, G., Huang, H., Wang, J., & Tarefder, R. (2016, August 06). Examining driver injury severity outcomes in rural non-interstate roadway crashes using a hierarchical ordered logit model. Retrieved December 01, 2020, from https://www.sciencedirect.com/science/article/pii/S0001457516302111?casa_token=meCuCJ7kRfEAAAAA%3Ah1AtR5Z0peArwGepOShPHTIxyBecRwiE-GjDyb2cMNg4nwhgXp7VXcMg5PFs--qWDIUHng
23.  Elassad, Z., Mousannif, H., & Moatassime, H. (2020, July 10). A real-time crash prediction fusion framework: An imbalance-aware strategy for collision avoidance systems. Retrieved December 01, 2020, from https://www.sciencedirect.com/science/article/pii/S0968090X20306239?via=ihub
24.  BYTES of the BIG APPLE™. (n.d.). Retrieved December 15, 2020, from https://www1.nyc.gov/site/planning/data-maps/open-data.page
25.  (n.d.). Retrieved December 15, 2020, from https://www1.nyc.gov/site/planning/planning-level/topics.page
26.  About Zoning. (n.d.). Retrieved December 15, 2020, from https://www1.nyc.gov/site/planning/zoning/about-zoning.page
27.  Zoning and Land Use Application (ZoLa). (n.d.). Retrieved December 15, 2020, from https://www1.nyc.gov/site/planning/data-maps/zola.page
28.  Calgary, O. (n.d.). Street Pavement Rating. Retrieved December 15, 2020, from https://data.cityofnewyork.us/Transportation/Street-Pavement-Rating/2cav-chmn
29.  Public-Safety. (n.d.). Retrieved from https://data.cityofnewyork.us/Public-Safety/Vision-Zero-View-Data/v7f4-yzyg
30.  Motor-Vehicle-Collisions-Crashes. (n.d.). Retrieved from https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95