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Abstract—The linear system with missing information is inves-
tigated in this paper. New methods are introduced to improve
the Mean Squared Error (MSE) on the test set in comparison
to state-of-the-art methods, through appropriate tuning of Bias-
Variance trade-off. The concept is to cluster the data and
adapt the learning model to each cluster. Hence, we set forth
a controlled bias into the problem and positively utilize it to
enhance learning capability on the instances considered in some
specific neighborhood. To deal with missing infrormation, we
propose a novel algorithm ”Missing-SCOP” based on SCOP-
KMEANS algorithm introduced by Wagstaff, et al., utilizing
the missing pattern of the dataset for construction of a soft-
constraint matrix and clustering in missing scenario. It is shown
that controlled over-fitting suggested by our algorithm improves
prediction accuracy in various cases. Numerical experiments
approve the efficacy of our proposed algorithm in enhancing
the prediction accuracy.

Index Terms. Missing Information, Soft-Impute, Linear Re-
gression, Prediction, Soft-Clustering, Matrix Completion.

I. INTRODUCTION

RECENTLY, there has been a growing interest in enhancing
prediction accuracy in machine learning. Although

previous studies indicate that clustering may improve
accuracy [23], training set shrinkage and data ignorance
would be the penalties since it assigns hard weights to
the subjects (i.e. each member has a weight parameter
w ∈ {0, 1}).
In this paper, a novel weighted ensemble learning method
of classification is presented based on weighted ensemble
learning [16]. We call this method Soft Weighted Prediction
(SWP), which weighs each cluster [1] obtained from training
set (possibly each training example if they form a cluster
themselves) based on its Euclidean distance from each test
set subject.

Missing information has been gaining importance quite
recently due to wide vision of applications it accompanies
in practice as recommendation systems [6], [17], quantized
rating systems and quantized data analysis [11], predictive
sparse models with missing information [7], [10], semi-
supervised learning with missing information [9]. Several
clustering methods are developed in the literature to enhance
prediction and regression accuracy. Several studies have been
constructed on constrained clustering recently [15]. Hard and
soft constrained clustering algorithms are aimed to modify the
K-means algorithm to consider the side information regarding

the connectivity graph of instances. Soft constrained clustering
(SCC) concept, introduced by Kiri Wagstaff [25] known as
KSCOP accounts for the baseline of our work. In this paper,
we aim to extend the concept of SCC to prediction scenarios
with missing information.

Data loss or idleness could be considered as a practical
paradigm of inducing missing parameters in the structure of
medical prediction problem. Obviously, in such cases missing
values are not randomly distributed, e.g. patients suffering
from the same disease, are more likely to be recorded with
the same blood factors and symptoms. Thus, patients with
similar missing factors, tend to be clustered together and have
tendency to be reported with correlated medical diagnosis [2],
[18]. This lack of similar recorded parameters (jointly missing
parameters for subjects) is assumed as a constraint parameter
in soft clustering. Prediction for medical data with missing
information can be found at [20].

II. MODEL ASSUMPTIONS

In matrix representation, linear models are represented as
follows:

Y = Xβ + ε, (1)

where
ε ∼ N(0, σ2I)

X is the oracle instance-feature matrix. However, in prac-
tice, X is partially observed. Mathematically speaking, the
observed matrix is obtained by applying a random mask on
the original data matrix. The mask contains zeros on the entries
which are missing or lost, i.e. we have access to a data matrix
X̃ = X

⊙
M , where M is the oracle mask, and

⊙
denotes

the Hadamard product. Y is the observed measurement vector.
β is the parameters (weights) coefficients.

A. Mathematical Approaches in Extracting the True Model
(Imputing Coefficients)

Coefficients vector β could be estimated knowing X and
Y as b. There are several regularization methods based on
assumed constraints on vector β such as sparsity, to find
the estimator b as it is not unique in many cases. However,
our main concern is superior prediction of vector Y , not
the coefficient. As Lasso constrains desired over-fitting,
the Least-Square (LS) solution is used for each cluster in
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controlled bias setting.

1) Lasso Solution: Assuming β as a sparse vector, desired
b will be obtained from optimization 2.

min
b

1

2
||Y −Xb||22 + λ||b||1, (2)

where parameter λ controls sparsity rate of coefficient β
which is equivalent to balancing the trade-off.
Letting λ = 0, P2 turns into the ordinary least square
problem. As λ approaches zero, this solution will have less
bias and more variance errors. Thus, such is a data-dependent
(training set) solution. As a result, test and train variation
will lead to an inferior estimation and larger MSE. Further,
as λ approaches infinity, b will be constrained to be sparse.
Thus, training set variation effect decreases and estimator
data-dependency will be omitted.

The least square solution is a particular case of LASSO
(λ = 0) which can be obtained from the normal equations are
as follows:

(XTX)b = XTY

Solving for b,
b = (XTX)−1XTY (3)

Let Y = Xβ, adding noise ε ∼ N(0, σ2I), the solution of
the problem is:

b = (XTX)−1XTY + (XTX)−1XT ε (4)

b = β + (XTX)−1XT ε (5)

Taking expectation yields to:

E[b] = E[β] + (XTX)−1XTE[ε] (6)

Knowing E[ε] = 0,
E[b] = β (7)

Thus, unlike Lasso, least square solution is an unbiased
estimation.

B. Controlled Overfitting

Overfitting occurs in test and training set variation cases.
This error could be controlled by constraining the training set
based on its similarity to each test example. This constraining
could be done by either soft or hard weighting methods. In
hard weighting algorithms training set would be shrunk to
the most similar members to test example, such as clustering.
On the other hand, Soft Weighting method prevents such data
losses by applying a weighting mask based on similarities.
Although SWP methods may cause accuracy reduction for
estimator b specifically in sparse cases, more accurate Y
estimation will be obtained. Specific estimator b is calculated
for each test member based on its distance from X , which
is not necessarily a good estimation of β, but more accurate
prediction for Y . We can also refrain from separate estimation
of β for each test sample by assigning each test sample to one
cluster comparing its distance to different centroids determined
by each cluster. As overfitting is controlled (by similarity)

and satisfying in such scenarios, the introduced clustering
algorithm, segments X and allocates each test set example, a
cluster based on its Euclidean distance from its centroid. Thus,
estimator b is trained by specific members, which results in
increase of variance and reduction in bias term of predicted
Y error. By increasing the number of clusters, overfitting and
increase in variance term error will be seen. K-mapping [19] is
one of the methods trying to optimize Bias-Variance trade-off
[12]. The error expression is:

E[(y − f̂(x))2] = (f(x)− 1

k

k∑
i=1

f(Ni(x)))
2 +

σ2

k
+ σ2 (8)

Supposing k nearest neighbors are chosen from the training
set. Bias, which is the first term, has a monotonous rise as k
increases, on the other hand, variance, the second term, drops
off at the same time.
Although variance minimization leads to worse interpolation
of training set, depending to its answer Y , it removes data
dependency. Bias minimization has the reverse effect, i.e.
although estimator b leads to the best Y calculation dependent
to the specific training set X , vector b itself has larger MSE
to the real coefficient coefficient β. Obviously in such cases
if test data does not fit in any of the clusters, the estimated Y
will face a larger error (large variance and small bias).

III. PROPOSED ALGORITHM

Clustering as a so-called method of tuning variance-bias
trade-off has been studied and discussed in the literature re-
cently as in [23]. Although simulations depicted enhancement
of prediction responses in some cases, hard clustering results
in uncontrolled overfitting and data loss.

As K-means Algorithm with squared Euclidean distance
parameter is used for k-mapping, minimum distance of test
set samples to centroid of clusters, leads to the appropriate
assignment of test samples to each cluster. Following the least
square solution, the predicted b is found. Multiplying test and
estimator b, results in predicted Y matrix. As the number of
clusters (k) increases, members of each cluster will decrease.
Although this will lead to lower bias, variance term of error
will increase. If test varies from training set, Estimated Y
accuracy will be greatly depressed. Proposed solution to the
problem is comprised of assigning each training set subject,
specific weight based on its similarity to test sample. This filter
is set to be an exponential function of distance. W is an m×1
matrix (filter) containing normalized distance between test and
each training set subject. Parameter w controls the strength of
filtering. As it approaches infinity, filter approaches one (no
filtering).

The SWP algorithm is provided in Alg. 1. Obviously, all
sub-figures of Fig. 1 in V-B1 depicts Bias-Variance tradeoff.

IV. TREATING WITH MISSING VALUES

Introduced methods are dependent on data matrix (training
set). Considering missing values, clustering would not be
possible (by k-means). Therefore, SWP algorithm requires
a new definition of similarity to address the missing values.
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Fig. 1: MSE as a function of weight tuning parameter w.

Algorithm 1 SWP
Input: Training set Xtrain, Response vector Ytrain, Test set

Xtest, Weight tuning parameter w

Output: Test set response vector Ytest

1: function SWP(Xtrain, Ytrain, Xtest, w)

2: for all datanew = Xtest(i, :) do

3: diff(j) := ||datanew −Xtrain(j, :)||22
4: diff ← diff

min(diff)

5: W := diag(e
−diff

2w )

6: b← (XT
trainWXtrain)

−1XT
trainWYtrain

7: Ytest(i, :)← datanew × b

8: end for

9: return Ytest

10: end function

If the missing is block-wise meaning that there are certain
feature sets and a patient for example has either records for
one feature set or not, then the clustering can be carried out
based on the patient profiles. similarity in each profile can be
addressed easily as the profiles are consistent among patients
yielding to similar missing patterns. However, if the missing
data is not block-wise, the non-missing pattern would differ
among patients. Consequently, there is no similar profile based
on which one can categorize the patients. Rather, we must
infer from the data missing pattern how the patients may be
similar. There are two approaches in dealing with non-block-
wise missing data. The first is to impute the missing data
followed by SWP. Therefore, we discuss a couple of off-
the-shelf matrix efficient matrix completion and imputation
methods next. A long list, however, can be found in [5], [4],
[3].

A. Imputation Methods

1) Soft Impute[13]: In this method, Z is considered as
a low-rank matrix. As rank(Z) is a non-convex function,
relaxation could be carried out by minimizing equivalent

Algorithm 2 Missing-SCOP
Input: Training set X , Number of Clusters k, Proportional

Tuning Parameter w

Output: Index vector idx, Centroids matrix C

1: function MISSING SCOP(X, k,w)

2: mask := not(X==0)

3: for all i,j do

4: if i==j then

5: continue

6: end if

7: Dmiss(i, j) := ||mask(xi)−mask(xj)||22
8: co mask(i, j) := mask(i, :)�mask(j, :)

9: Ddist(i, j) := ||xi − xj ||22 � co mask(i, j)

10: D(i, j) := w×Dmiss(i, j)+ (1−w)×Ddist(i, j)

11: end for

12: S(i, j) = 1− 2
√

D(i,j)
maxD(:)

13: [idx, C]← SCOP KMEANS [25] (X, k, S)

14: end function

nuclear norm of Z. Finding matrix Z which satisfies 9, is
desired.

||X − Z||22 subject to ||Z||∗ ≤ τ (9)

The Lagrangian is given as:

min
Z

1

2
||X − Z||2F + λ||Z||∗, (10)

The solution is given by Singular vlue thresholding (SVT) as
follows:

Sλ := U(S − λI)+V T

Where (S − λI)+ is either positive or zero, otherwise.

To optimize the algorithm time complexity the suggested
idea is to start Z from mean-estimation which makes iterative
code converge faster.
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2) MCPAT [8]: MCPAT is an efficient and adaptive ma-
trix completion method which functions properly for highly
missing scenarios which yields high SNRs in retrieving infor-
mation.

B. Non-Impute Method

Soft-Impute, an Imputation method, applies low-rank
restriction on the recovered dataset. Data loss is an inevitable
consequence of the solution, as linearly dependent features
could be ignored in clustering.
Many recent studies have focused on clustering datasets
containing missing informations. Most common suggested
solutions offer modifications to clustering algorithms such as
KMEANS and FCM illustrated in [24] and [14], respectively.
Although the main concern in such solutions are similarity of
observed elements, it is worth noting that the same missing
features represent a kind of resemblance in such scenarios.
Balancing n-dimensional distance of observed data and
missing features similarity by a weight tuning parameter
leads to desired clustering.

1) Missing-SCOP: We have chosen SCOP-KMEANS
Algorithm [25] as a baseline for the development of missing
values clustering. As the real model dictates, missing pattern
contains information and is profitable in clustering as a factor
of similarity, i.e. we leverage the missing mask similarity of
each pair in training set as a constraint in soft constrained
clustering. Let matrix S be an m ×m matrix, which assigns
each pair (xi, xj) ∈ X×X a constraint s ∈ [−1, 1]. s is
assigned based on mask similarities and jointly observed
features Euclidean distance using a proportional tuning
parameter w. As s approaches −1, the constraint forces
separation. On the other hand, when s approaches 1, the
two members of the pair must be clustered in the same
group. Replicative Kmeans algorithm is employed in centroid
initialization due to local minimum trap prevention.

2) SWP via Missing-SCOP: SWP algorithm consists of
splitting the training set to one member clusters, and spec-
ifying each cluster a weight based on its distance to each
individual. Another solution to the problem is soft clustering
algorithms [21] utilization to find the probability matrix U for
the test example. Thus, weight matrix is a diagonal matrix in
which members of same clusters have the same weights.
As the problem contains missing values, introduced Missing-
SCOP algorithm is used to obtain more precise clustering in
comparison to imputation methods.
Let X be the dataset matrix, divided to m×n train set Xtrain

and p × n test set Xtest. Assuming Xtrain is clustered into
k sub-matrices by centroid matrix C and index vector idx,
probability matrix U is defined in 11.

U =


u11 u12 · · · u1k
u21 u22 · · · u2k

...
...

. . .
...

up1 up2 · · · upk

 (11)

, where for each i ∈ [1, p], j ∈ [1, k]

uij :=
min{ui1, ui2, ..., uik}
||Xtest(i, :)− C(j, :)||22

(12)

Weight matrix W in SWP algorithm would be obtained
by matrix U, consequently. As uij is a normalized factor
of similarity between ith test set example and jth cluster
centroid, vector Wclusters and matrix W are defined for each
Xtest example in 13 and 14 respectively.

Wclusters := e
−(U(i,:)−1)

2w , (13)

which is calculated for ith Xtest example.

W := diag
(
Wclusters(j)× (idx == j)

)
, (14)

where j = [1 : k].

Weighted least square solution in the algorithm requires
matrix completion which could be obtained by MCPAT [8]
algorithm.

V. SIMULATION RESULTS

A. Datasets

1) Simulated Data: As the real problems dictate, train-
ing set and test set are random processes which consist
of normally distributed random sequences (features). Let X
be an m × n random process consists of random variables
X = {X1, X2, ..., Xn} where X1, X2, ..., Xn are normally
distributed with uniformly random parameters i.e. Xi ∼
N(µ, σ). As Law of Large Numbers (LLN ) states, the average
of the results obtained from a large number of trials should
be close to the expected value, and will tend to become closer
as more trials are performed. Due to data-dependency of the
simulation results, our reported MSEs are averaged on 20
generated random data.

2) Sample Data: Algorithms are also tested on following
MATLAB sample datasets:

cities, discrim, kmeansdata, stockreturns

3) Missing Mask: Real cases depict significant and mean-
ingful similarities in missing patterns of similar elements.
Suggested missing mask consists of same missing pattern for
each cluster in Dataset matrix. A Gaussian logic mask is
added to this mask as expected in real world. Considering
m×n dataset X clustered into k sub-matrices each consists of
n1, n2, ..., nk members by index vector idx. Explained m×n
logic mask is generated as described in 15.

mask(idx == i, :) := ones(ni, 1)×
(
r ≥ (rmax ×mrate)

)
(15)

, where i = [1 : k], rmax = max(r(:)), mrate is the missing
rate and r1×n ∼ unif .



5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

w

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82
S

il
h
o
u
e
tt

e
 V

a
lu

e
Average Silhouette Values

Fig. 2: Averaged Silhouette Values as a function of weight
tuning parameter w tested on kmeansdata.

TABLE I: Silhouette Values of each solution.
XXXXXXXXXXDataset

Algorithm
Impute non-Impute no-Missing

Cities 0.3802 0.3829 0.4221

Discrim 0.4589 0.4716 0.6173

Kmeansdata 0.7958 0.8109 0.8606

Stockreturns 0.8111 00.8352 0.9585

B. No Missing Scenario

1) SWP: Algorithm is tested on datasets described in V-A.
Results are respectively depicted in Fig. 1. Although optimal
tuning parameter w varies from case to case, general behavior
of the figures are the same.

C. Missing Scenario

Introduced methods dealing with missing elements of
training set, are tested on mentioned datasets.

1) Clustering: Our main concern of dealing with missing
cases is clustering. Impute and non-impute methods, intro-
duced in Section IV are tested on datasets explained in V-A,
which masked by the mentioned method.
Silhouettes [22] as a well-known method of clustering accu-
racy assessment is utilized. Simulation results are depicted in
TABLE I to compare and find the efficiency of each clustering
algorithm.
Silhouette values of kmeansdata as an appropriate dataset
for clustering are depicted in fig. 2. This figure illustrates a
trade-off between missing mask similarity and observed values
correlation tuned by parameter w described in algorithm 2.
Notable improvement of clustering accuracy is observed in
this case.

VI. CONCLUSION

An innovative method of prediction enhancement is
introduced and explained on linear models. SWP algorithm
as a developed weighted least square solution is suggested
and surpassed many state-of-the-art methods such as

clustering in simulation results. Datasets containing missing
informations have been studied; adjusted SWP is developed
for such scenarios, too. Clustering as a fundamental part of
this adjustment is discussed and Missing-SCOP algorithm is
introduced as a mean of handling missing values in clustering.
Mentioned algorithm considers missing mask similarity of
each example as a constraint of clustering by weight tuning
parameter w. Comparing mean silhouette values as a factor
of clustering precision, simulation results depicted that
Missing-SCOP algorithm, a non-impute clustering method of
cases with missing values, outperformed imputation methods
like soft-impute.
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