\contentslabel
[\thecontentslabel]1.25cm \titlerule*[.5pc]. \thecontentspage\contentslabel[\thecontentslabel]1.25cm \thecontentspage[]\contentslabel[\thecontentslabel]1.25cm \titlerule*[.5pc]. \thecontentspage[]

MethodsSelected

ESOM,EvolvingSelfOrganizingMaps

Theofficialmanualforthismethodcandefoundhere,http://dame.dsf.unina.it/documents/ESOM_UserManual_DAME-MAN-NA-0021-Rel1.2.pdf,thereyouwillfindafullexplanationofthemethod,themeaningofeveryvariableandthesupportedfiletypes.Hereismyownexplanationofhowthisparticularmethodworks,firstofall,canbeusedasanunsupervisedmachinelearningtechniqueoryoucanhelpthealgorithmtoidentifyregionsanmakeitasupervisedmachinelearnigtechnique,thistypeofclusteringfindsgroupsofpatternswithsimilaritiesandpreservesitstopology,startswithanullnetworkwithoutanynodesandthosearecretedincrementallywhenanewinputpatternispresented,theprototypenodesinthenetworkcompetewitheachotherandtheconnectionsofthewinnernodeareupdated.Themethodisdividedinthreestages,Train,TestandRun.ThefirststeptoexperimentwiththismethodisTrain.Here,theimportantvariablestoundertandanlookatare,thelearningrate,epsilonandthepruningfrequency.ItishighlyrecomendablethatyouchecktheDAMEWAREmanualforthisfunction,theretheywillexplainindetailthemeaningofeachonthementionedvariables.

ExpectedResults

ThisparticularmethodasImentionedbeforesupportsdatacubesandconsidersasanindependentpatternallthenumbersinthemulti-dimensionalarraythismeansthatourclustersaregroupsofpatternswithsimilarcharacteristics,thatcorrespondtovolumesofsimilarfluxesofelectronsinsidethedatacube.Theoutputfilesfromtheexperimentthatwillshowusourresultsare,
Thefilethatyouwillbelookingforwardtoseeisthelastone,thezipwhereyouwillbeabletoseetheslicesofthevolume,andhowthefinalconfigurationoftheclusterswasarranged.

Failedandstillrunningtests:Whatnotodoandwhatisstillrunning

ThefirsttestsIdidincludedallthecompletedatacube,includingtheareaswheredatawasmissing,theimageswereonlyreprojectedandconvolved.Thatwasbeforerealisingthatoutliersmigthaffecttheabilityofthealgorithmtoidentifytheclustersanddistractthemwithnoiseandmissingdata.So,thefirstthingyoumustNOTdo,istogetridoftheoutlierswhenyouaretrainingyournetwork,ifyouevergettohaveawelltrainednetworkthenitmightbeinterestingtolearnhowthenetworkinteractswithnoiseanoutliers,butfornowwewillhelpherabit.Intable\ref{tab:ds9failed}aretheinputparametersIusedtothefailedtestsappliedintherawdatacube,andintable\ref{tab:ds9running}aretheinputparametersusedonexperimetsthatarestilrunningsinceAugust7th,2014.(Iwonderiftheywilleverend)