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Abstract

Background: A systematic literature review was executed to identify data sources used in place of, side by side with, or in
conjunction with, electronic health record (EHR) data in predictive models for influenza like illness (ILI) outbreaks.

Objectives: To determine how predictive models for ILI outbreak use EHR data and how often EHR data is used in ILI
surveillance and forecasts.

Methods: Articles were sourced from Pubmed and the Journal of Medical Internet Research (JMIR). Results from these
online databases were filtered down to a corpus of 48 studies. From these studies, 10 dummy and 10 categorical variables
were identified and placed into a Google sheet; data visualizations were built from the Google sheet using Tableau public; and
descriptive analytics reviewed.

Results: From the articles, eighty-four data sources were identified, of which 14 (or 17%) were data from EHRs. EHR data
was utilized in 5% of those studies that also leveraged either governmental or syndromic surveillance data. Likewise, EHR
data was used in 5% of studies that incorporated Google search and trend data. Most studies’ models used autoregression
(15%), with machine learning algorithms referenced second most often (13%). The utilization of EHR data was found only in
the United States (9 studies) and Europe (4 studies).

Conclusion: EHR data used in tandem with other data sets in an ensemble approach, or in isolation, can be used by predictive

models to signal alert levels earlier than existing government-provided models in those regions where such data is available but

its adoption remains limited.
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Introduction

The incorporation of EHR data into syndromic surveillance alert systems has the potential to significantly
improve the prediction models used to alert the public of disease outbreak, but faces technical, regulatory,
data standard, and quality control challenges. [1].

Data Sources for Modeling Flu

Many government health agencies, oftentimes a country’s Center for Disease Control, collect regional ILI
data for reporting and forecasting [2]; [3]; [4]; [5]. The United States CDC categorizes surveillance data
into five bins: virologic surveillance, outpatient illness surveillance, mortality surveillance, hospitalization
surveillance, and summarized geographic state reports on the spread of flu and provides the data to the
public via web application [2]; [6].

Relatively newer data sources have become available due to the growth of the Internet, including self-
reporting (volunteer) websites, Google Search and Twitter data; models built using such data have been
found to detect trends earlier than governmental methods alone [7]; [8]; [9]. Google failed at building a flu
model that could reliably predict outbreaks based upon search alone [10].

EHR data has also been used as data input into predictive models and used in isolation or in combination
with historical data, has been found to alert as early as Google and Twitter based models and be as reliable
as CDC based models [11]; [12].

This Study

From the 48 studies included, 55 national data sets from 6 continents with 24 distinct countries were identified
; 15 from the United States and 8 from China ranking first and second respectively.

Figure 1: Countries and Number of Articles
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Methods

A systematic process was developed and applied for this study, and included the following components: search
methodology, variable selection, data presentation, and analysis.

Search Methodology

The reports researched were from the Journal of Medical Internet Research (JMIR) and Pubmed. The JMIR
website offered peer reviewed and open access medical journals that available for reference on any publication
related to the health domain [13]. Pubmed was used as an online searchable database of citations from
biomedical literature [14] .

When combing through search results to identify articles to include, the following five step method was
executed:

1. From the search results, quickly read a resource that seems promising, then rule it in or out.
2. If it was to be included, the article was assigned a number, and was summarized. If not included, then

return to step 1.
3. Documented the keywords from the summary.
4. Reviewed article footnotes for additional journal articles to review. If so, proceeded to step 2.
5. Go to step 1.

48 studies were identified for inclusion using these process.

Variable Selection

From the summaries, we took the keywords and used them to create a possible set of dummy and categor-
ical variables that would enable aggregation of attributes to identify patterns and compare results across
articles. Twenty variables were identified: 10 dummy variables and 10 categorical variables.

Dummy Variables

A value of 1 was used to indicate the study included that data set, and a value of 0 to indicate the data set
was not mentioned. Dummy variables enabled us to create subgroups for comparison, and is a method used
in regression analysis [15].

• EHR Data: EHR data was used in a model
• Pharmacy Data: prescriptions for specific drugs used for ILI symptoms or influenza
• General Practitioner Data: data from providers not located in hospitals or emergency departments.
• Governmental Data: data sourced from regional or national databases. E.g, Centers for Disease

Control (CDC) data.
• Surveillance Sites Data: providers that monitor ILI levels and often report
• Google: search data, or Google Flu Trends
• Facebook: a stand in for social media that is non-Twitter
• Twitter: twitter data
• Self reported: volunteer data, or online we application data for users who self select, or mobile apps
• Meteorological Data: weather data
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Categorical Variables

Where possible, the number of possible values to include in the following categories was limited; some of
these categories held NULL (or no value) if the study did not provide the data point.

• Model: modeling technique used
• Country: one ore more countries per article could happen
• Continent: the continent in which the country is located.
• Data Source: the government entity or provider name. E.g., “CDC”
• Flu: the flu strain studied. E.g., H1N1
• Regions: geospatial areas that do not necessarily align with political borders.
• Healthcare System Type: Universal or public-private mix.
• Date Range: Begin and end years of when the flu outbreak was studied
• Study Year of Publication: the year of publication
• Coding Scheme: any reference to a coding standard. E.g., ICD-9.

Google Sheet

A google sheet was created with the variables identified, plus two columns for this article:

• Citation: for this paper, the citation to include in the references
• Study #: from the search methodology; an arbitrary number
• EHR
• Pharm
• Gen Pract
• Govtl
• Surveil
• Goog
• Fbook
• Twiiter
• Self
• Meteor
• Country
• Continent
• Region
• Healthcare System
• Model
• Data Source
• Flu
• Date Range
• Study Year of Pub.
• Coding Scheme

Results

Google Sheet
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Citation Study # EHR Pharm Gen Pract Govtl Surveil Goog Fbook Twitter Self Meteor
[16] 40 0 0 0 1 0 0 0 0 0 0
[17] 37 0 0 0 1 0 0 0 0 0 1
[18] 27 0 0 0 0 0 0 0 0 0 1
[19] 26 0 0 0 0 1 0 0 0 0 0
[20] 32 0 0 1 1 1 1 0 0 0 1
[21] 38 0 0 0 0 1 0 0 0 0 1
[22] 28 0 0 0 0 1 0 0 0 0 0
[23] 29 0 0 0 1 0 0 0 0 0 1
[24] 7 1 0 1 0 1 0 0 0 0 0
[25] 25 0 0 1 1 1 0 0 0 0 0
[26] 10 0 1 0 0 0 0 0 0 0 0
[27] 11 0 0 0 0 0 0 0 0 1 0
[28] 12 0 0 0 0 0 0 0 0 1 0
[11] 13 1 0 1 1 1 0 0 0 0 0
[29] 14 0 0 1 1 1 1 0 1 1 0
[30] 15 1 0 0 1 0 1 0 0 0 0
[31] 16 1 0 0 0 0 0 0 0 0 0
[32] 17 0 0 0 0 0 0 0 0 1 0
[33] 18 0 0 0 0 0 0 0 1 0 0
[34] 33 0 0 0 1 1 0 0 1 0 0
[35] 20 1 0 0 0 1 1 0 0 0 0
[36] 22 1 0 0 0 0 0 0 0 0 0
[37] 23 1 0 0 0 0 0 0 0 0 0
[38] 30 0 0 0 1 0 0 0 0 0 0
[39] 34 0 0 0 0 0 0 0 0 0 0
[40] 35 0 0 0 0 1 0 0 0 0 0
[41] 36 0 0 0 1 0 0 0 0 0 1
[42] 39 0 0 0 0 0 0 0 0 0 0
[43] 44 0 0 0 0 1 0 0 0 1 0
[44] 43 0 0 0 0 1 0 0 0 0 0
[45] 45 0 0 0 0 0 0 0 0 0 0
[46] 1 1 0 0 0 0 0 0 0 0 0
[47] 19 1 0 0 1 1 0 0 0 0 0
[48] 2 1 0 1 0 0 0 0 0 0 0
[49] 3 1 0 0 1 0 1 0 0 0 0

[50] 5 1 0 0 0 0 0 0 0 0 0
[51] 31
[52] 41
[53] 6 1 0 0 0 0 0 0 0 0 0
[54] 9 1 0 0 0 0 1 0 1 1 0
[55] 8 0 0 0 0 0 0 0 0 1 0
[56] 21 0 0 0 1 1 1 1 1 0 0
[57] 42 0 0 1 1 1 0 0 0 0 0
[58] 24 0 0 0 1 1 1 0 0 0 0

Study # Country Continent Regions Healthcare System Type
40 China Asia Provinces Public-private mix
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United States North America States Public-private mix
37 China Asia Provinces Public-private mix
27 Cote d’Ivoire Africa Districts Public-private mix
26 Kenya Africa Provinces Public-private mix
32 China Asia Provinces Public-private mix
38 China Asia Provinces Public-private mix
28 Nigeria Africa States
29 Eygpt Africa
7 France Europe Departments Universal
25 United Kingdom Europe Countries Universal
10 Japan Asia Prefectures Universal
11 South Korea Asia Provinces Universal
12 Netherlands Europe Countries Public-private mix

Belgium Public-private mix
Portugal Universal
Italy Universal
United Kingdom Universal
Sweden Public-private mix
France Universal
Spain Universal
Ireland Universal
Denmark Universal

13 Belgium Europe Provinces Public-private mix
14 United States North America States Public-private mix
15 United States North America HHS Regions Public-private mix

United States North America Public-private mix
16 United States North America New York City Public-private mix
17 Norway Europe
18 United States North America Public-private mix
33 United States North America 11 U.S. Cities Public-private mix

20 France Europe Brittany Universal

22 United States North America Pennsylvania Public-private mix
23 United States North America

30 Argentina South America Provinces
34 China Asia Public-private mix

35 China Asia Provinces Public-private mix
36 China Asia Provinces Public-private mix
39 China Asia Beijing Public-private mix
44 Canada North America Hutterite colonies in Canadian provinces Universal
43 Germany Europe 140 regions of Southern Germany Public-private mix
45 Canada North America Universal
1
19 United States North America Public-private mix

Australia Australia Universal
United Kingdom Europe Universal

2 United Kingdom Europe England Universal
Wales
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Scotland
3 United States North America
Three part study
5 United States North America New York City Public-private mix
31
41
6 United States North America Massachusetts
9 United States North America Boston
8 United States North America Multiple
21 South Korea Asia Provinces Universal
42 Australia Australia Melbourne Universal
24 Italy

Greece

Study # Model
40 D-R algo built by study authors, using the Grey prediction model
37 Zero truncated Poisson regression model
27 Auto regressive
26 Sensitivity and Specificity
32 GLM

LASSO
Deep Learning with Neural Network
Statistical model fusion with Bayesian model averaging
Auto regressive

38 RS-SVM
28 None
29 Multi-variate risk model
7 periodic regression

robust periodic regression
Markov model

25 Moving Epidemic Model
Percentile approach

10 multiple regression model
11 Ordinary Least Squares Linear Regression
12 Multi-variate
13 Auto regressive
14 Machine learning

Stacked linear regression
Support Vector Machine regression
AdaBoost regression with decision trees

15 Machine learning
Auto regressive

16 None
17 None
18 Machine Learning

Classifier
Support Vector Machine (SVM)

33 Machine Learning
Classifier

20 Serfling regression model
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22 Regression models
23 Machine Learning

Unsupervised
30 Monte Carlo

Regression models
34 Positive Predictive Value

Negative Predictive Value
35 Positive Predictive Value

Negative Predictive Value
36 Logistic Regression

Spatial Autocorrelation Analysis
Temporal Cluster Analysis

39 Multivariate logistic regression analysis
44 Positive Predictive Value

Negative Predictive Value
Pearson chi-square
Uni-variate logistic regression

43 Akaike’s information criterion (AIC)
Bayesian information criterion (BIC)
One-step-ahead
Ranked probability score (RPS)

45 Logistic regression
1 Logistic regression
19
2 Logistic regression

Positive Predictive Value
Negative Predictive Value

3 Auto regressive
Three part study None
5
31
41
6 None
9 Auto regressive
8 Simulation

Ensemble
Pearson Correlation
Machine Learning

21 LASSO
SVR

42
24 Auto regressive

Study # Data Source
40 China Weather Network

Local Health Bureau Website and Database
WHO
CDC

37 Ministry of Heatlh
27 Database of the influenza surveillance network of the National Institute of Public Hygiene (INHP)
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Airport Operating Development Aviation and Meteorology Company
26 Access or SQL Databases at the CDC offices in Nairobi
32 Google search data

meteorological data
38 China CDC

National Meterological Information Center
28
29 WHO

U.N. data
7 Computerized medical records from participating surveillance hospitals

ED
General Practitioner data

25 General Practitioner data
10 Prescription drug data
11 Mobile App called Fever Coach
12 Websites that volunteers go to
13 General Practictioner Data

Surveillance Data from the national Influeza Center (WIV-ISP data)
14 CDC

athenahealth
Google Trends
Twitter
FluNearYou

15 athenahealth
CDC

16 NY Presbyterian Hospital EHR
17 Blood glucose monitor
18 Twitter
33 Twitter

County and city websites
20
22 Lancaster General health system in Lancaster County, PA
23 IMS Health
30 National Institute of Microbiology

Argentina Health Ministry
National Institute of Geography

34 Xiamen International Airport
35 Gansu Province
36 WHO

State Forestry Administration
National Fundament GIS
NDVI data from Geospatial Data Cloud
Data Sharing Infrastructure of Earth System Science

39 Clinical data: Peking University Health Science Center
44
43 https://survstat.rki.de/

45 Six acute care hospitals in Ontario
1 EPIC rheumatology patients from a large pediatric hospital
19 US Indian Health Service

Australian National Influenza Surveillance Systems
UK Heatlh Protection Agency
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2 30 General Practitioners
3 athenahealth
Three part study
5
31
41
6
9
8 WISDM

Influenzanet
FluNearYou

21 Korean CDC
42
24

Study # Flu Date Range Study Year of Pub. Coding Scheme
40 H1N1 2009 2014

H1N1
37 H7N9 (avian) 2013 - 2014 2010
27 H1N1 2007 - 2012 2016
26 2013 - 2014 2017
32
38 2005 - 2009 2012
28 H5N1 (avian) 2006 - 2009 2014
29 H5N1 (avian)
7 H3N2 2010 - 2016 2017
25 2015
10 2012
11 2017
12 2017
13 2003 - 2015 2017 ICPC-2
14 2009 - 2015
15 2014 - 2015 2016
16 H1N1 2010 ICD-9

Internal hospital codes
17 2005
18 2012 - 2013 2017
33 2013 - 2014 2014

20 2010 - 2015 2018 ICD-10
Unstructured data

22 H1N1 2009 2010 ICD-9
23 H1N1 2009 - 2010 2015 ICD-9

30 H1N1 2009
34 H3N2 2015 - 2016 2018
35 2014 - 2015 2016

36 H7N9 (avian) 2013 - 2014 2015
39 H1N1 2009 - 2010 2012
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Using a free data visualization building application, called “Tableau Public,” we created graphs and tables
using the Google sheet as the data source [59].

Analysis

Geospatial

6 continents were represented in the studies, with North America accounting for 40% of the data sources. The
health care systems of the 26 distinct countries were assigned a value of either “Public-private mix” or
“Universal.” Public-private mix was more common, occurring 57% of the time.

The H1N1 flu strain was studied 11 times, with all others tallying 8 references. The 2013-14 flu season was
most studied; most articles were published in 2017 (29%).

EHR Data Source Utilization

In four studies EHR data was used in combination with, or in comparison to, surveillance data [24]; [11];
[35]; [60]. When used in combination, some studies referred to this as an “ensemble” method[29]; [12].

Modeling Techniques

Based on our summary from the 48 papers, we classified the modeling techniques adopted in the papers into
three main categories: Machine Learning (ML)Models, Statistical Models (except ML models) and Other
models.
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Figure 2: Categorical Variable Counts

Machine Learning Models

Machine Learning Methods
Regression Model Others

Logisitic Regression Linear regression GLM RS-SVM decision tress Classiers
5 10 1 1 1 8

Table 6: Summary of Machine Learning Models

Machine learning (ML) included supervised, unsupervised and self-supervised algorithms, which could help
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Figure 3: EHR data compared with Google, Surveillance Data, Twitter data, and Government-sourced data

construct prediction models based on past/previous data [61]. In all of the 48 papers, ML models were used
21 times. In all of the ML models adopted, the linear regression method was utilized most. This model
included multiple regression model, ordinary least square linear regression, periodic regression, and robust
periodic regression. In six studies, all from locations in the United States, ML was used in three ways. First,
ML techniques were used three times as part of an ensemble data approach, in which two or more data sets
related to flu surveillance were combined[12]; [29]; [55]. ML was used with twitter data twice [34]; [33]
and with EHR data once [37]. All studies found that ML techniques performed as good as or better than
existing surveillance techniques in detecting influenza outbreaks [62].

Statistical Modeling Techniques

Statistical Modeling Techniques are mathematical models that embody a set of statistical assumptions

Statistical
Models (total

=22)
Models Evaluation

Metricx
Pearson

Auto Regressive
Model

Grey
Model

Markov
Model

spatial
model

AIC BIC NPV PPV Pearson
Chi-square

Pear-
son
Corr

7 1 1 1 1 1 4 4 1 1

Table 7: Summary of Statistical Models

concerning the generation of some sample data and similar data from a larger population [63]. In the 48
studies, statistical models were adopted 22 times. Among the application of statistical models, 7 were auto
regressive models, 10 were used for evaluating the flu outbreak predictive model accuracy and 2 were about
adopting Pearson methods.
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Other Models (total = 10)
Algorithm Deep learning Other

Monte Carlo One-step simulation Neural network Ensemble Self-defined
1 1 1 1 1 5

Table 8: Summary of other Models

Other Models

Aside from adopting models, such as machine learning and statistical models, some researchers applied
some algorithms, such as Monte Carlo simulation, deep learning methods, and other self-defined models in
their investigation of the flu outbreak probability. Based on our reading on the 48 studies, we summarized
there were 10 other model types used or referenced. Of these , the self-defined methods, such as ranked
probability score and percentile approach were used most.

Discussion

Based upon our research public health informatics flu prediction models on a global basis continue to primar-
ily use syndromic surveillance data from sentinel providers (18 data sources) which is often data provided
and maintained by the government (17 data sources). Google search trends have been used, as well as
Twitter data, in some models around the globe (China, France, Italy, U.S. South Korea). EHR data was
found to be used as in input to influenza predictive models only in the United States and Europe (France,
England, Belgium). China continues to use primarily surveillance data, maintained at the provincial and
national level; sometimes meteorological data was also use as input. Japan was an outlier, in the sense that
it was the only nation in our study cohort that used pharmacy prescription data. Australia models used
surveillance data. Countries in Africa were found to use surveillance data and meteorological data as inputs
to predictive models.

Modeling techniques that used EHR data were most often Auto Regression (3 studies) and Machine Learning
(2 studies). EHR-powered models in the studies most often used data provided by the cloud EHR service
provide athenahealth (4 studies). [54]; [29]; [12]; [49]. ML techniques and statistical modeling techniques
were evenly used (21 times and 22, respectively). ML techniques were capable of utilizing one or more data
sets and building prediction models. This ensemble approach was found to have success in one study, and
to have challenges with controlling for known non-demographic population variables that are specific to the
strain and dispersion of the influenza strain present in the data[29]; [57].

Limitations

Modeling limitations noted were selection and sample bias, especially for those studies that used volunteer,
self-reported data as in [28] and [28], respectively. Some models that use social data selection bias of regions
with larger populations with access to the Internet may influence the predictive power of the models and
the likelihood of EHRs being present.

Limitations of this study included the translation of article attributes into dummy variables, which required
interpretation and synthesis and therefore left room for ambiguity and challenge. E.g., one study utilized
data from an EHR which was populated into a claims level data warehouse [35]. In such instances, a
determination was made of either 1 or 0, and a note added into the Google sheet (referenced above) to
record the reasoning behind the decision.
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Conclusions

The choice of a surveillance system affects the prediction model used to predict influenza epidemics [57]. EHR
data was found to be used as in input to influenza predictive models only in the United States and Europe
(France, England, Belgium). A cloud service provider, athenahealth, has provided de-identified EHR data
for use in research studies and may hold promise for a future model in which “nowcast” models outperform in
terms of robustness and timeliness those existing surveillance systems which are monitored by governmental
entities.
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