
PyTuring Compiler Overview

Max Miller
University of New Hampshire

May 16, 2018

Why Compile?

The main purpose of PyTuring is to be an educational tool for learning about
computability and Turing machines. As a part of this, I see it beneficial to create
a compiler with verbose output to show how the instructions in PyTuring are
compiled into machine code (x86 Assembly). As a resource, I will be using
the “Dragon Book”, or rather Compilers: Principles, Techniques, and Tools by
Aho, Lam, Sethi, and Ullman. This book will both act as a sort of “instruction
manual” as well as a general reference book. I encourage anyone interested to
start reading it and join in on the fun.

Overview

If you are interested in seeing the PyTuring documentation, head over to https://
github.com/mam1101/pyturing/blob/master/PyTuring%C2%A0Documentation

.pdf, where the complete documentation for the general Unicode interpreter is
hosted.

We can break down the compiler into multiple parts, and address each one
as we come to them. The parts are as follows (Aho & Ullman, 1986):

• Lexical Analyzer
• Syntax Analyzer
• Intermediate Code Generator (optional)
• Code Optimizer (optional, but cool)
• Code Generator (absolutely required)

Each of these can be created in parts. This paper will serve as more of an
analysis of the theory behind the compiler than actually making the compiler,
though some code may be present.

Lexical Analyzer

The purpose of the lexical analyzer is to convert the various symbols and whites-
pace used within a PyTuring program and turn into compiler readable tokens.

1

https://github.com/mam1101/pyturing/blob/master/PyTuring%C2%A0Documentation.pdf
https://github.com/mam1101/pyturing/blob/master/PyTuring%C2%A0Documentation.pdf
https://github.com/mam1101/pyturing/blob/master/PyTuring%C2%A0Documentation.pdf


This first requires us to create a directory of the allowed symbols and their
meanings, as well as a map of these to their corresponding tokens. Luckily,
PyTuring only has a few special-case lines, and the rest are broken down into
the command structure. Command structure allows for a very simple token
delineation and mapping, in the form of:

(CMD, state, read, action, goto)
This allows for an id token state of CMD, with a vector for storing each

part of the command structure. We can put this in a hashtable when this gets
translated into code. When parsing, a look ahead will be necissary to ensure
the different aspects of the vector are properly deliniated. In this case, we just
need to account for a space character, with special cases of the <;> to end a line
and the >> and << as actions on the machine head rather than a placement,
though this can be held through the process and determined at the end.

We can check for keywords as we move through the program as well, seeing
as there are only a few of them. SUB, and ENDSUB can be broken down into
their own tokens, with SUB having the form:

(SUB, name, startState, tokenList)
The token list contains a list of tokens in the command token structure. In

code, we can just use a hashtable array for this.
The other keywords can be put into simple 1x2 vectors. Each of the top

three commands involves simply storing what type of token they are, along
with the value. These do not need to hold anymore information, and cannot by
the language’s syntax checker.

Syntax Analyzer

2



References

Aho, S., Lam, & Ullman. (1986). Compilers: Principles, Techniques, and Tools.
Pearson.

3


	References

