
Spring Board 8.2.3 DataCamp Intermediate SQL Exercises

cihat kurt1

1Texas A&M University

June 6, 2022

Basic CASE statements

What is your favorite team?

The European Soccer Database contains data about 12,800 matches from 11 countries played between 2011-
2015! Throughout this course, you will be shown filtered versions of the tables in this database in order to
better explore their contents.

In this exercise, you will identify matches played between FC Schalke 04 and FC Bayern Munich. There
are 2 teams identified in each match in the hometeam id and awayteam id columns, available to you in the
filtered matches germany table. ID can join to the team api id column in the teams germany table, but
you cannot perform a join on both at the same time.

However, you can perform this operation using a CASE statement once you’ve identified the team api -

id associated with each team!

• Create a CASE statement that identifies whether a match in Germany included FC Bayern Munich, FC
Schalke 04, or neither as the home team.

• Group the query by the CASE statement alias, home team.

-- Identify the home team as Bayern Munich, Schalke 04, or neither

SELECT

CASE WHEN hometeam_id = 10189 THEN ’FC Schalke 04’

WHEN hometeam_id = 9823 THEN ’FC Bayern Munich’

ELSE ’Other’ END AS home_team,

COUNT(id) AS total_matches

FROM matches_germany

-- Group by the CASE statement alias

GROUP BY home_team;

home team total matches

FC Bayern Munich 68
Other 1088
FC Schalke 04 68

1



CASE statements comparing column values

Barcelona is considered one of the strongest teams in Spain’s soccer league.

In this exercise, you will be creating a list of matches in the 2011/2012 season where Barcelona was the home
team. You will do this using a CASE statement that compares the values of two columns to create a new
group – wins, losses, and ties.

In 3 steps, you will build a query that identifies a match’s winner, identifies the identity of the opponent,
and finally filters for Barcelona as the home team. Completing a query in this order will allow you to watch
your results take shape with each new piece of information.

The matches spain table currently contains Barcelona’s matches from the 2011/2012 season, and has two
key columns, hometeam id and awayteam id, that can be joined with the teams spain table. However, you
can only join teams spain to one column at a time.

• Left join the teams spain table team api id column to the matches spain table awayteam id. This
allows us to retrieve the away team’s identity.

• Select team long name from teams spain as opponent and complete the CASE statement from Step 1.

SELECT

m.date,

--Select the team long name column and call it ’opponent’

t.team_long_name AS opponent,

-- Complete the CASE statement with an alias

CASE WHEN m.home_goal > away_goal THEN ’Home win!’

WHEN m.home_goal < away_goal THEN ’Home loss :(’

ELSE ’Tie’ END AS outcome

FROM matches_spain AS m

-- Left join teams_spain onto matches_spain

LEFT JOIN teams_spain AS t

ON m.awayteam_id = t.team_api_id;

-- Filter for Barcelona as the home team

WHERE m.hometeam_id = 8634;

date opponent outcome

2011-10-29 RCD Mallorca Barcelona win!
2011-11-19 Real Zaragoza Barcelona win!
2011-12-03 Levante UD Barcelona win!

CASE Advance

EX: Multiple Cases

Barcelona and Real Madrid have been rival teams for more than 80 years. Matches between these two teams
are given the name El Clásico (The Classic). In this exercise, you will query a list of matches played between
these two rivals.

You will notice in Step 2 that when you have multiple logical conditions in a CASE statement, you may
quickly end up with a large number of WHEN clauses to logically test every outcome you are interested in. It’s
important to make sure you don’t accidentally exclude key information in your ELSE clause.

2



In this exercise, you will retrieve information about matches played between Barcelona (id = 8634) and Real
Madrid (id = 8633). Note that the query you are provided with already identifies the Clásico matches using
a filter in the WHERE clause.

SELECT

date,

CASE WHEN hometeam_id = 8634 THEN ’FC Barcelona’

ELSE ’Real Madrid CF’ END as home,

CASE WHEN awayteam_id = 8634 THEN ’FC Barcelona’

ELSE ’Real Madrid CF’ END as away,

-- Identify all possible match outcomes

CASE WHEN home_goal > away_goal AND hometeam_id = 8634 THEN ’Barcelona win!’

WHEN home_goal > away_goal AND hometeam_id = 8633 THEN ’Real Madrid win!’

WHEN home_goal < away_goal AND awayteam_id = 8634 THEN ’Barcelona win!’

WHEN home_goal < away_goal AND awayteam_id = 8633 THEN ’Real Madrid win!’

ELSE ’Tie!’ END AS outcome

FROM matches_spain

WHERE (awayteam_id = 8634 OR hometeam_id = 8634)

AND (awayteam_id = 8633 OR hometeam_id = 8633);

date home away outcome

2011-12-10 Real Madrid CF FC Barcelona Barcelona win!
2012-04-21 FC Barcelona Real Madrid CF Real Madrid win!
2013-03-02 Real Madrid CF FC Barcelona Real Madrid win!
2012-10-07 FC Barcelona Real Madrid CF Tie!

Filtering your CASE statement

CASE statements allow you to categorize data that you’re interested in – and exclude data you’re not interested
in. In order to do this, you can use a CASE statement as a filter in the WHERE statement to remove output
you don’t want to see.

Here is how you might set that up:

In essence, you can use the CASE statement as a filtering column like any other column in your database.
The only difference is that you don’t alias the statement in WHERE.

SELECT *

FROM table

WHERE

CASE WHEN a > 5 THEN ’Keep’

WHEN a <= 5 THEN ’Exclude’ END = ’Keep’;

Ex: The first code shows the usage of case in SELECT statement. And second code uses case in WHERE
caluse to filter only BOLOGNO wins and also get rid of null values

-- Select the season and date columns

SELECT

3



season,

date,

-- Identify when Bologna won a match

CASE WHEN hometeam_id = 9857 AND home_goal > away_goal THEN ’Bologna Win’

WHEN awayteam_id = 9857 AND away_goal > home_goal THEN ’Bologna Win’

END AS outcome

FROM matches_italy;

-- Select the season, date, home_goal, and away_goal columns

SELECT

season,

date,

home_goal,

away_goal

FROM matches_italy

WHERE

-- Exclude games not won by Bologna

CASE WHEN hometeam_id = 9857 AND home_goal > away_goal THEN ’Bologna Win’

WHEN awayteam_id = 9857 AND away_goal > home_goal THEN ’Bologna Win’

END IS NOT NULL;

Notice in the second query CASE statement used only to filter data, but it does not create
any column or values. Thus, labels used in it (’Bologno Win’) are useless for this particular
case because we don’t want to filter based on labels but necessary for the syntax.

COUNT using CASE WHEN

Do the number of soccer matches played in a given European country differ across seasons? We will use the
European Soccer Database to answer this question.

You will examine the number of matches played in 3 seasons within each country listed in the database.
This is much easier to explore with each season’s matches in separate columns. Using the country and
unfiltered match table, you will count the number of matches played in each country during the 2012/2013,
2013/2014, and 2014/2015 match seasons.

SELECT

c.name AS country,

-- Count matches in each of the 3 seasons

COUNT(CASE WHEN m.season = ’2012/2013’ AND

m.home_goal > m.away_goal THEN m.id END) AS matches_2012_2013,

COUNT(CASE WHEN m.season = ’2013/2014’ AND

m.home_goal > m.away_goal THEN m.id END) AS matches_2013_2014,

COUNT(CASE WHEN m.season = ’2014/2015’ AND

m.home_goal > m.away_goal THEN m.id END) AS matches_2014_2015

FROM country AS c

LEFT JOIN match AS m

ON c.id = m.country_id

-- Group by country name alias

GROUP BY country;

4



country matches 2012 2013 matches 2013 2014 matches 2014 2015

Portugal 103 108 137
France 170 168 181
Scotland 89 102 102
Netherlands 137 144 138
Spain 189 179 171
Belgium 102 6 106
Italy 177 181 152
Germany 130 145 145
England 166 179 172
Switzerland 84 82 76
Poland 97 110 114

Same output can be obtained using SUM

SELECT

c.name AS country,

-- Sum the total records in each season where the home team won

SUM(CASE WHEN m.season = ’2012/2013’ AND m.home_goal > m.away_goal

THEN 1 ELSE 0 END) AS matches_2012_2013,

SUM(CASE WHEN m.season = ’2013/2014’ AND m.home_goal > m.away_goal

THEN 1 ELSE 0 END) AS matches_2013_2014,

SUM(CASE WHEN m.season = ’2014/2015’ AND m.home_goal > m.away_goal

THEN 1 ELSE 0 END) AS matches_2014_2015

FROM country AS c

LEFT JOIN match AS m

ON c.id = m.country_id

-- Group by country name alias

GROUP BY country;

Calculating percent with CASE and AVG

CASE statements will return any value you specify in your THEN clause. This is an incredibly powerful tool
for robust calculations and data manipulation when used in conjunction with an aggregate statement. One
key task you can perform is using CASE inside an AVG function to calculate a percentage of information in
your database.

Here’s an example of how you set that up:

AVG(CASE WHEN condition_is_met THEN 1

WHEN condition_is_not_met THEN 0 END)

SELECT

c.name AS country,

-- Calculate the percentage of tied games in each season

ROUND(AVG(CASE WHEN m.season=’2013/2014’ AND m.home_goal = m.away_goal THEN 1

WHEN m.season=’2013/2014’ AND m.home_goal <> m.away_goal THEN 0

END),2) AS ties_2013_2014,

ROUND(AVG(CASE WHEN m.season=’2014/2015’ AND m.home_goal = m.away_goal THEN 1

WHEN m.season=’2014/2015’ AND m.home_goal <> m.away_goal THEN 0

5



END),2) AS ties_2014_2015

FROM country AS c

LEFT JOIN matches AS m

ON c.id = m.country_id

GROUP BY country;

6


