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Abstract15

The origins of river and floodplain waters (groundwater, rainfall, and snowmelt) and their16

extent during overbank flow events strongly impact ecological processes such as denitri-17

fication and vegetation development. However, the long-term sensitivity of floodplain18

water signatures to climate change remains elusive. We examined how the integrated hy-19

drological model HydroGeoSphere and the Hydraulic Mixing-Cell method could help us20

understand the long-term impact of climate change on water signatures and their spa-21

tial distribution in the protected Biebrza River Catchment in northeastern Poland. Our22

model relied on 20th century Reanalysis Data from 1881 to 2015 and an ensemble of EURO-23

CORDEX simulations for RCP 2.6, 4.5, and 8.5 from 2006 to 2099. The historical com-24

ponent of the simulations was subjected to extensive multiple-variable validation from25

1881 to 2019. The results show that the extents of water sources were rather stable in26

the floodplain in the 1881-2015 period. The projected future impacts were variable with27

each analyzed RCP, but in all cases, different significant trends were present for the spa-28

tial distribution of water sources and for the river-floodplain mixing. However, the to-29

tal volume of water from different sources was less sensitive to climate change than the30

dominant sources and spatial distribution of water. The simulation results highlight the31

impact of climate change on the extent of water sources in temperate zone wetlands with32

significant implications for ecological processes and management. These results also un-33

derscore the urgent need to leverage such modeling studies to inform protective and preser-34

vation strategies of floodplain wetlands.35

Plain Language Summary36

In this study, we used a hydrological model that was capable to simulate volumes37

of water from rain, snowmelt, groundwater discharge, and river flooding to investigate38

how these volumes will vary with the climatic conditions. For the study site, we selected39

the Biebrza River wetland floodplain, where former research highlighted the presence of40

these water sources in inundation during flooding. It was also known that the water sources41

have different chemical (e.g. nutrients) and physical (e.g. sediments) compositions and42

they correlate with the vegetation in the wetland. Hence, any change in the extent of43

these water sources (driven e.g. by climate change) may affect vegetation. Our research44

indicated that indeed the spatial extent of water sources will strongly vary with the fu-45

ture climate projection while the less detailed floodplain-wise volume of the water sources46

will not vary that much. We also showed that the direction of change in the water sources’47

extent will be different given the analyzed climate scenario. These results should be taken48

into account especially by the natural conservation managers to prepare for the changes.49
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1 Introduction50

Mixing of river and floodplain water during floods, also known as perirheic mix-51

ing (Mertes, 1997), has great significance for ecological and hydrochemical processes. This52

significance in floodplain ecology is reflected by the floodplain vegetation zonation, which53

is related to the differences in the chemical or sediment composition of water from river54

and groundwater, rain and snowmelt inundation in the floodplain (Chormański et al.,55

2011; Keizer et al., 2014). Similar relations are present in the Amazon floodplain, where56

the mixing of sediment-rich and sediment-poor water near the confluences is related to57

vegetation (Park & Latrubesse, 2015), and avifauna (Laranjeiras et al., 2021). Also, in58

the Amazon floodplain, the river-floodplain water frontier is controlling the crevasse splays59

occurrence (Aalto et al., 2003). The hydrochemical significance of water mixing is mainly60

due to nitrate removal by denitrification. This process occurs in the flow-through wet-61

lands, where nitrate- and oxygen-rich water from a river mixes with the oxygen-poor flood-62

plain water. Although this effect was reported in several floodplains, including Atchafalaya63

(Jones et al., 2014; Scott et al., 2014), Po (Racchetti et al., 2011), and Wisconsin (Forshay64

& Stanley, 2005), to achieve considerable nitrate removal a significant floodplain area65

has be connected to the river (Natho et al., 2020). As we have shown previously for a66

natural temperate zone wetland floodplain - Biebrza River, the river-floodplain water67

mixing, or the active perirheic zone, is very dynamic in space and time (Berezowski et68

al., 2019). In that study, we used state-of-the-art modeling tools for a single flood event69

study, hence we were not able to assess the active perirheic zone’s long-term variability70

and the role of the changing climate.71

Hydrological impact models of climate change predict a shift of the highest and low-72

est discharges at the end of the twenty-first century for several regions of the world (Prudhomme73

et al., 2013; Giuntoli et al., 2015; Arnell & Gosling, 2016). These regions include the ma-74

jor floodplain and wetlands, where the shift in flooding pattern may influence ecologi-75

cal processes such as vegetation development (Murray-Hudson et al., 2006; Garris et al.,76

2014; Zulkafli et al., 2016; Thompson et al., 2016). The hydrological shifts in the future77

will also lead to changes in floodplain connectivity in unregulated floodplains. This may78

result in increased nitrate removal by denitrification, as simulated for the Lower Missouri79

River (Jacobson et al., 2022). Nitrate removal varies in floodplain habitats with differ-80

ent contact with river water (Scaroni et al., 2011). Since, the zonation of water sources81

within the flooding extent is relevant for vegetation development and denitrification, more82

precise quantification of these ecological processes in the scope of climate change could83

be achieved by analyzing water sources’ zonation. This remains a gap in the literature.84
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Modeling of climate change impact on floodplain inundation is usually done using85

either 1D or 2D hydrodynamic models. Such models require a precise definition of bound-86

ary conditions for which coupling with catchment-based hydrological models is often used87

(Thompson et al., 2008; Karim et al., 2015; Zhang et al., 2019). Another approach is to88

drive a hydrodynamic model using boundary conditions, such as surface runoff, from hy-89

drological components of general circulation models (GCM), or climate reanalysis (Mohanty90

& Simonovic, 2021). In either case, the surface water in the floodplain lacks or has lim-91

ited, feedback with parts of the catchment that are not represented by the hydrodynamic92

model, which includes groundwater, tributary inflow, or surface runoff. These feedbacks93

are important in the proper modeling of floodplain inundation, as those minor water sources94

produce the inundation in remote parts of the floodplain and determine the river-floodplain95

water frontier (Berezowski et al., 2019) and groundwater mixing zone (Nogueira et al.,96

2022). Therefore, to achieve full feedback between all water sources integrated hydro-97

logical models (IHMs) are required (Sebben et al., 2013). The computational complex-98

ity of these models often requires some simplifications or limiting the simulation area (Barthel99

& Banzhaf, 2015) to achieve feasible run times. Also, the application of IHMs to climate100

change impact research is limited in scenarios and analysis periods lengths (e.g. Ferguson101

and Maxwell (2010); Sulis et al. (2011); Erler et al. (2019)), while using a GCM ensem-102

ble reduces uncertainty related to future climate projections impact on hydrology Z. Kundzewicz103

et al. (2018). Currently, this research area remains relatively unexplored, as only a few104

studies run such models with long-term forcing data from GCMs ensembles, such as the105

Intergovernmental Panel on Climate Change (IPCC) emission scenarios (Goderniaux et106

al., 2009; Sulis et al., 2012; Perra et al., 2018; Boko et al., 2020; Ramteke et al., 2020;107

Yuan et al., 2021) and no such models have analyzed the extent of water from different108

sources.109

Except for the GCM ensemble, the credibility of the modeling results in climate110

change studies is achieved by comprehensive model validation and using multiple impact111

models. The latter is especially important in large-scale (regional and continental) cases,112

where some parts of the study area are ungauged (Krysanova et al., 2018). Further, it113

seems that using IHMs ensembles may not be crucial, since contrary to many concep-114

tual models used in climate change impact studies, they are almost entirely physically115

based and perform similarly (Kollet et al., 2017). On the other hand, a comparison of116

conceptual, physically based, and fully integrated hydrological models in a climate change117

impact study revealed that the models showed the same direction of change for most of118

the indicators, however, a fully coupled IHM indicated an the opposite trend in mean119

annual evapotranspiration when compared to remaining models (Perra et al., 2018). Ei-120
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ther way, using an IHM ensemble would be beneficial for the results by increasing cred-121

ibility, although this comes with an associated computational burden.122

Comprehensive validation of an IHM, should, therefore, be of greatest concern in123

climate change impact studies. Most often the observations of river discharge are used124

for the validation of impact models, while IHMs, due to the simulation of surface wa-125

ter hydrodynamics can be further validated against water levels. The spatial aspect of126

validation can be achieved by using multiple gauges, however, flooding water extent can127

serve this purpose as well. The latter is often achieved using multi-temporal remote sens-128

ing data providing spatiotemporal insight into model performance (e.g. Paiva et al. (2012)),129

however, in vegetated areas such validation can be problematic, due to obscuring by veg-130

etation canopy. IHMs are usually also validated against groundwater levels, which gives131

further insight into processes relevant to catchment functioning that are not depicted by132

surface water. Also, if transport or water mixing is simulated, IHMs can be validated133

against hydrochemical parameters. This list of validation variables for IHMs does not134

include all the possibilities. Instead, it indicates that, contrary to conceptual models, the135

physically based IHMs can be validated comprehensively to minimize uncertainty related136

to the simulated complex interactions, such as mixing of water from different sources.137

To examine the impact of climate change on spatiotemporal water signatures dur-138

ing flooding in a natural temperate zone wetlands, this research aims to employ a robust139

IHM for the Bierbza catchment to investigate the long-term variability of the extent and140

mixing of water from different sources during flooding. The model for the Biebrza will141

be run for a historical period using 20th Century Reanalysis data and a GCM ensem-142

ble for representative concentration pathways (RCP) 2.6, 4.5, and 8.5 scenarios for the143

future. With this model, the aims of the research are:144

• To determine if the past climate and future climates under RCPs 2.6, 4.5 and 8.5145

will drive any significant changes in the spatial distribution and dominance of wa-146

ter sources in the Biebrza floodplain.147

• To determine if the volume of water in the floodplain will significantly change un-148

der past climate and possible future climates with RCPs 2.6, 4.5 and 8.5.149

• To highlight the implications for ecological processes, modeling, and management150

strategies under climate change.151
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Figure 1. The floodplain area and the measurements points (right panel). Location of the
study area in Poland (left panel) with the major rivers (blue lines), Biebrza river catchment
(black outline), and the floodplain (black patch). The legend concern only the right panel.

2 Methods152

2.1 Study area153

The Biebrza catchment (22.7◦ E, 53.7◦N) is of medium size, 7091 km 2 and the lower154

Biebrza valley (hereinafter referred to as floodplain), where we focus our analysis com-155

prises 297 km2 (Figure 1).156

We chose the Biebrza valley as the study area because of its natural character and157

ecological significance. The major river engineering work was conducted in the area in158

the first half of the 19th century to establish a waterway between Biebrza and Neman159

Rivers. Next, in the middle of the 19th century parts of the Wetlands located in the lower160

and middle parts of the valley were meliorated. In the 20th century, only minor melio-161

ration work was conducted except in the middle part of the Biebrza valley (Banaszuk,162

2004). Currently, the anthropogenic pressure is low, as the population density in the re-163
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gion where the Biebrza River catchment is located is the lowest in Poland (58 people per164

km2) (Statistics Poland, 2021). The future population projections for this region pre-165

dict a 32% decline between 2020 and 2100 (Eurostat, 2019). The Biebrza valley was grazed166

and mowed in the past and aquatic vegetation in the river was occasionally removed (Berezowski167

et al., 2018). Since the establishment of the Biebrza National Park in 1993 mowing and168

grazing is continued as an active protection measure (Kotowski et al., 2013). Currently,169

the Biebrza National Park is one of the largest active protection areas in Europe (59223170

ha), with the Biebrza Wetlands listed as Ramsar and Natura 2000 sites.171

Long-term average discharge in Biebrza River has been 38.1 m3s−1 (1970-2005),172

with a minimum of 4.33 m3s−1 and maximum of 517 m3s−1. The river flooding area reaches173

up to 52.5 km2 and inundation can last on average between 121 to 193 days depending174

on location (Grygoruk et al., 2021). The average annual precipitation over the period175

1970-2005 in the catchment has been 672 mm, of which 88 mm was snow, whereas the176

yearly potential evapotranspiration (PET) was 621 mm.177

Wetland vegetation in the floodplain exhibits zonation related to flooding (Pałczyński,178

1984). The Phragmition belt is located around the river up to about 500-900 m, further179

away up to 2500 m from the river, Magnocaricion vegetation is present, and further again,180

Fen vegetation, such as Calamagrostion neglectae, Caricion diandrae, or Caricion demis-181

sae is located up to the valley margin.182

The Quaternary deposits are 130-212 m deep and the majority consist of glacial183

till with minor sand layers deposited during the Riss glaciation. Middle and lower parts184

of the Biebrza valley have a sand layer deposited during the Weichselian glaciation on185

top of which the Holocene sand and peat layers are present (Banaszuk, 2004).186

Given undisturbed vegetation, unregulated river, natural hydrology, and low con-187

tamination in relation to European standards the Biebrza wetlands may be considered188

as a reference site for similar fen wetlands (Wassen et al., 2006).189

2.2 Forcing data190

Hydrological simulations for over two hundred years period required several sources191

of forcing data (Table S1). The criteria for selecting a data source were daily (or higher)192

temporal resolution and availability of the required forcing variables (precipitation, snow193

cover dynamics, air temperature, and PET).194

For the historical 1880-2015 period we used the 20th century climate reanalysis (20CR)195

data (Slivinski et al., 2019). Out of this data-set, we used ensemble mean of water equiv-196

alent of accumulated snow depth (WEASD) [kg m−2], daily mean of 3-hour accumulated197
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precipitation amount (APCP) [kg m−2], air temperature at 2m (air2m) [K], and poten-198

tial evaporation rate (PEVPR) [W m−2]. We used the following preprocessing steps be-199

fore bias correction. The difference of WEASD between subsequent days was calculated.200

Then, the negative values were multiplied by -1 and used as uncorrected daily snowmelt,201

ṡ, [mm] and the positive values were used as uncorrected daily snowfall (ṗs) [mm]. For202

PET, the PEPVR values were multiplied by 0.01152 to change units to mm.203

For the future period, we used the EURO-CORDEX data (Jacob et al., 2014) from204

ten simulations using different GCMs (Table S1). Each simulation used the SMHI-RCA4205

regional climate model (RCM). We selected all available simulations from the EURO-206

CORDEX archive that had the required forcing data for the hydrological model. Only207

four out of ten simulations had the required forcing data for RCP 2.6. To investigate the208

effect of greenhouse gases emission scenarios on water sources mixing in the floodplain209

we used the following RCPs: RCP 2.6, which aims to limit the increase in global mean210

temperature to 2 K by a CO2 emission decline since 2020, RCP 4.5 which is an inter-211

mediate scenario, where the emissions start to decline after 2040, and RCP 8.5 which212

is a worst-case scenario in which emissions continue to rise during the entire 21st cen-213

tury. From each simulation, we used daily mean values of snowfall flux (PRSN, used as214

ṗs) [kg m−2 s−1], snowmelt flux (SNM, used as ṡ) [kg m−2 s−1], precipitation flux (PR)215

[kg m−2 s−1], near-surface air temperature (tas) [K], and potential evapotranspiration216

(EVSPBLPOT) [kg m−2 s−1]. We used the following preprocessing steps before bias cor-217

rection. Daily snowmelt, snowfall, precipitation, and potential evapotranspiration fluxes218

were multiplied by 86400s to change units to mm.219

For the 2015-2019 period (for which the 20CR data was not available), when the220

hydrochemical validation took place we used the 2 km gridded precipitation and tem-221

perature data-set (Piniewski et al., 2021) and snowfall and snow depth data from the222

Biebrza-Pieńczykówek meteorological station managed by the Institute of Meteorology223

and Water Management - National Research Institute (IMGW-PIB).224

2.2.1 Bias correction225

We used the quantile mapping (Gudmundsson et al., 2012) bias correction using226

the R software package “qmap”. The following meteorological observations were used to227

identify parameters of bias correction: the total precipitation and air temperature from228

a 5km gridded data-set (Berezowski et al., 2016) (the 2km data set was not available at229

that time), PET from a gridded 25 km data-set (Joint Research Center, 2019), and the230

snowfall from the Biebrza-Pieńczykówek meteorological station. In such variable avail-231

ability, we were not able to conduct bias correction of snowmelt, s, and rainfall, pr. The232
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snowmelt was constrained to the snowfall using the sum of uncorrected snowmelt (ṡv)233

and the sum of bias-corrected snowfall (ps,v) in a given event v. An event was defined234

as a period between the start of snow accumulation and the end of snowmelt; most of-235

ten there are one or two larger events in each year. Daily snowmelt [mm] in an event v236

was calculated as s = ṡ
ps,v

ṡv
. The rainfall pr [mm] for a given day was calculated by sub-237

tracting bias-corrected snowfall from bias-corrected precipitation. We used a maximum238

overlapping period for bias correction of each variable, which was 1955-2013 for precip-239

itation and air temperature, 1957-2015 for snowfall, and 1979-2015 for PET for the 20CR240

data. In the case of the EURO-CORDEX data, we were additionally limited by the his-241

torical period, which was either 1951-2005 or 1970-2005 (Table S1). After conducting242

the bias correction we calculated the daily average value of each variable over all grid243

cells in the Biebrza catchment and used this data to force the hydrological simulations.244

2.3 Hydrological model245

We simulated the transient water fluxes in the Biebrza River catchment using Hy-246

droGeoSphere (Brunner & Simmons, 2012; Hwang et al., 2014) IHM. The 3D ground-247

water flow was solved using Richard’s equation in prism elements and the 2D surface wa-248

ter flow was solved using the diffusion wave approximation of the Saint-Venant equations249

in triangular elements. The surface-subsurface flow coupling was realized using the first-250

order exchange. Evapotranspiration flux was simulated using the Kristensen and Jensen251

(1975) conceptual model, which takes into account interception storage, time-variable252

leaf area index (LAI), pounding, and soil saturation. Snowmelt and rainfall fluxes were253

provided as forcing data boundary conditions. The model parameters were specified spa-254

tially according to relevant geological, land-use, or vegetation units.255

We simulated water mixing using the hydraulic mixing-cell (HMC) method (Partington256

et al., 2011). In our case the mixing was simulated only for the surface flow domain, how-257

ever, simulations in groundwater are also possible (Nogueira et al., 2022). The HMC method258

accounts for water fluxes from various boundary conditions and groundwater discharge259

effectively producing a fraction of each water source in a model node. Water sources were260

differentiated spatially. To calculate the river water fractions we summed all fractions261

upstream of the floodplain area. Whereas in the floodplain area, original fractions of rain-262

fall, snowmelt, and groundwater were used to represent the inundation components gen-263

erated therein. In the first time step, the fractions are initialized using an artificial ini-264

tial fraction, equal to one.265

We used the parallel solver in the HGS, which split the coefficient matrix into two266

parts. The flow solver convergence criteria for the maximum absolute residual error was267
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1x10 −10 m3s−1, and the Newton iteration convergence criteria for the maximum abso-268

lute nodal change in the pressure head was 1 cm. In the HMC method, the maximum269

ratio between fractions volume was set to 2048 and above this threshold, all fractions270

are set to zero and the reset fraction is set to one (Partington et al., 2013).271

2.3.1 Leaf area index estimation272

The HydroGeoSphere model uses LAI during the estimation of evapotranspiration.273

Since LAI was not available in any data set covering the simulation period we used a degree-274

day model to simulate LAI for each meteorological data set used in this study. The model275

was based on observations that wheat requires about 760 degree-days for development276

and 500 more degree-days for maturity (Rawson & Macpherson, n.d.) and can be sum-277

marized in the following steps:278

1. At the beginning of a calendar year LAI is equal to the minimum for a given veg-279

etation280

2. Growing season is defined as a day when the monthly average temperature is greater281

than 5◦C.282

3. Since the beginning of the growing season LAI increases proportionally to degree-283

days to reach the maximum for given vegetation at 760 degree-days.284

4. LAI remains at the maximum for 500 degree-days.285

5. LAI decreases linearly to reach the minimum for given vegetation on the last day286

of the growing season.287

The maximum LAI for each vegetation was based on measurements in the study area288

(Dąbrowska-Zielińska et al., 2014; Suliga et al., 2015).289

2.4 Error metrics290

In this study, we use the same error metrics for a number of different simulated quan-291

tities, such as water levels, discharge, water source fractions, and area. We present the292

general form of the equations below. Whenever a given error metric is used in the text293

it is specified based on which quantities it was calculated for and, if applicable, to which294

quantity it was normalized.295

The Kling-Gupta efficiency [-]:

KGE =
√

(r − 1)2 + (α− 1)2 + (β − 1)2 (1)
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where r [-] is the correlation coefficient between simulated and observed discharge, α [-296

] and β [-] are ratios of simulated to observed mean and standard deviation discharges297

respectively. The KGE ranges between −∞ and 1 and the higher the value the better298

fit to the observation is achieved by the model.299

The root mean square error [units the same as input data]:

RMSE =

√√√√√ N∑
i=1

(
ĥi − hi

)2

N
(2)

where hi and ĥi are observed and simulated quantities respectively for a data record (e.g.300

time step) i out of N . The RMSE represents the magnitude of error between the obser-301

vations and simulations and ranges between 0 and ∞.302

The systematic error, or bias [units the same as input data]:

b =
N∑

i=1
ĥi − hi (3)

where the symbols are the same as in Eq. 2. The bias shows whether the simulated quan-303

tities overestimate (positive b) or underestimate (negative b) the observed quantities and304

b = 0 indicate no bias.305

The linear correlation between two variables was quantified using Pearson’s cor-306

relation coefficient (r) [-] and the fraction of variance explained between the two vari-307

ables was quantified using the coefficient of determination (r2). If two variables are time-308

dependent the linear correlation can be interpreted in terms of the temporal variability309

agreement between them.310

2.5 Model grid311

To prepare the model grid we processed the relevant geographical information in312

QGIS 3.10 software in the following steps. We simplified the geometry of the rivers by313

limiting the minimum node distance to 125 m along the river course for major rivers and314

500 m for minor rivers. For the major rivers, the banks were limited to a 60 m buffer around315

the river. This forced the perpendicular river cross-section to be trapezoidal. For minor316

rivers, no buffer was created and the perpendicular cross-section was triangular. The catch-317

ment boundary was simplified by limiting the minimum node distance to 2000 m. The318

geographical data source used in these steps was the Map of the Hydrographic Division319

of Poland in scale 1:10 000. The feature nodes obtained from the previous steps and the320

nodes representing locations of the observation wells were used to generate a Delaunay321
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triangular grid in the triangle software (Shewchuk, 1996). The triangulation constraints322

were the maximum triangle size of 1 km2 and the minimum angle in a triangle of 31◦.323

Finally, we refined the grid fourfold in the floodplain area and relaxed the nodes using324

an algorithm provided by Kaser et al. (2014). The triangular grid consisted of 19297 nodes325

and 38081 elements of which 10436 were in the floodplain. The median element area for326

the whole grid was 71243 m2 and for the floodplain was 20037 m2; the minimum element327

area was 1017 m2.328

The nodes elevation was obtained from a Digital Elevation Model (DEM) of Poland329

in the resolution of 1m and from the Shuttle Radar Topography Mission in 30 m reso-330

lution outside the Polish border (in total 0.4% of the study area). The digital elevation331

model was updated with the lake bathymetry. The riverbed elevation for the major rivers332

was obtained from 160 land-survey perpendicular cross-sections conducted by the Pol-333

ish Water Authority. The distance between subsequent cross-sections was about 500 m.334

As a riverbed elevation, the first quartile of the elevation in the nearest cross-section was335

used. The minor river’s riverbed was calculated by subtracting river depths from a sur-336

face elevation. The river depth was estimated based on point measurement data provided337

by the Biebrza National Park and from our field survey.338

The grid consisted of six vertical layers in which the top four layers had gradually339

increasing thickens and represented the stratification of peat, sand, and glacial till formed340

between the Riss glaciation and Holocene. The thickness of the first layer was 0.75 m341

in the floodplain. The two bottom layers were thick and represented glacial till deposited342

during the Riss glaciation. The elevation of the lowest layer was equal to -30 m AMSL,343

the average lower boundary of the Quaternary sediments (Banaszuk, 2004). In total, the344

grid consisted of 135097 nodes and 228486 prism elements.345

We defined three porous materials: glacial till, sand, and peat with different hy-346

draulic properties. In the river valley and its proximity, we assigned the materials based347

on geological cross-section data (Banaszuk, 2004), whereas in the remaining parts of the348

upland we used data from several geological bore profiles provided by the Polish Geo-349

logical Institute (Polish Geological Institute, 2014). The hydraulic properties for the sur-350

face water flow and evapotranspiration were assigned to ten land-use and vegetation classes351

present in the study area based on the Corine Land Cover map (Commission of the Eu-352

ropean Communities, 2013).353
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2.6 Model calibration354

We used a screening approach to find an optimal parameter set for the hydrolog-355

ical model. For this purpose, we randomly sampled 800 random parameter sets using the356

latin hypercube algorithm. We used the latin hypercube algorithm implementation from357

the “tgp” R package (Gramacy & Taddy, 2010). Each set consisted of 26 base param-358

eters, which produced 43 model parameters by applying the constraints and transfor-359

mations (Table S3). The constraints were used to scale a base parameter by a factor for360

different material types, such as vegetation types and produce multiple model param-361

eters. We used the logarithmic transformation for the hydraulic conductivity and gamma362

distribution transformation for evapotranspiration parameters (details in Table S3-S5).363

The calibration period was two years and ten months (2004-01-01 to 2006-10-31) followed364

by a one and half year warm-up period (2002-06-01 to 2003-12-31). The initial condi-365

tions for each calibration run were transferred from a steady-state simulation using pa-366

rameters from our previous model version (Berezowski et al., 2019). We choose the best367

model base on KGE for two discharge stations and RMSE [m] for five groundwater wells368

heads. The locations of discharge stations were chosen at the inlet and outlet of the flood-369

plain (Osowiec and Burzyn) and the location of the wells were chosen two in the flood-370

plain, one in the middle and upper parts of the valley. The relation between average KGE371

and average RMSE for all stations forms a Pareto front with a group of the best param-372

eter sets from which the final model was selected manually by reviewing the simulated373

hydrographs.374

2.7 Model validation375

2.7.1 Hydrological validation376

We used several contemporary and archival data sources with varied temporal cov-377

erage for the validation of simulated river flow and groundwater heads (Table S2). We378

used the same metrics as for calibration and the RMSE was normalized by the data range379

for each station or well. To investigate how the hydrological model performed temporar-380

ily we calculated KGE for discharge and RMSE for river water levels per decade.381

The oldest water level records (Table S2) for the study area contained only the rel-382

ative water level in reference to the gauge zero level. For these records we calculated the383

absolute water level, i.e. in meters AMSL, using a relation between the mean absolute384

and relative water levels for the remaining records for a particular gauge. The disadvan-385

tage of this approach is that the temporal trend is not preserved and the RMSE is bi-386

ased.387
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Some of the groundwater heads data were missing the absolute readings, i.e. depth388

instead of elevation was measured. Calculation of the absolute levels was done by using389

a 1x1 m digital elevation model values in the well location as the zero depth. Few ground-390

water wells showed a clear step in the records, which could have been due to the displace-391

ment of the reference point. We removed records with the step from the database.392

2.7.2 Remote sensing validation393

We validated the simulated water extent using a multi-temporal remote sensing data-394

set (Berezowski et al., 2020). In that data-set 161 water extent maps were developed for395

the 2014-2019 period using the Sentinel-1 synthetic aperture radar (SAR) for the flood-396

plain with the average water level error of the flood extent of 0.21 m. The major draw-397

back of this data-set was that in densely vegetated areas the flood extent was obscured398

and effectively these areas are labeled as not flooded even if the water level was high.399

Further, the data-set was not sensitive to shallow water, which limits its applicability400

only to an indication of deeper river water within the Biebrza flooding extent. From this401

data set, we selected 134 flood maps with the lowest error and used them along with the402

hydrological model output to calculate the following validation metrics.403

Despite some drawbacks, the remote sensing data-set was a good indicator of the

temporal dynamics of the flooding extent, especially for the river water zone. Therefore

validation in the floodplain was calculated using the total flooding area due to simulated

water depth [m2]:

ah =
M∑

m=1
h̃mam (4)

and the flooding area due to river water fraction presence [m2]:

ariver =
M∑

m=1
f̃m

rivera
m (5)

where h̃m = 1 if simulated water depth in a node m is greater than 5 cm and h̃m =404

0 otherwise, f̃m
river = 1 if river water fraction is greater than 0.1 in a node m and f̃m

river =405

0 otherwise, am is the node m contributing area, and M is the total number of nodes406

in the floodplain. The values of ah and ariver are calculated for each time step and used407

to calculate the correlation coefficient with the flooded area from the remote sensing data-408

set. Further, we calculated the fraction of area that is indicated as flooded on the inter-409

section of hydrological model output and remote sensing data-set:410
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ih =

M∑
m=1

T∑
t=1

(
h̃m,tam

)
∧ (ãm,t

rs am)

M∑
m=1

T∑
t=1

(
ãm,t

rs am
)

for intersection with the simulated water depth and411

iriver =

M∑
m=1

T∑
t=1

(
f̃m,t

rivera
m
)
∧ (ãm,t

rs am)

M∑
m=1

T∑
t=1

(
ãm,t

rs am
)

for intersection with simulated river fraction, where h̃m,t and f̃m,t
river are the same as h̃m

412

and f̃m
river, but indexed also for time step t, ãm,t

rs = 1 if the flooded area in the remote413

sensing data-set in a node m is greater than 25% and ãm,t
rs = 0 otherwise, and T is a414

group of time steps which overlap in the hydrological simulations and remote sensing data-415

set. Ideally, this validation should be extended to the calculation of true-negative flood-416

ing extent. This, however, was not possible due to false negative flooding extent in the417

remote-sensing data-set due to vegetation cover.418

2.7.3 Hydrochemical validation419

To investigate whether the different water sources presence is related to the sim-420

ulated water source fractions we measured the electrical conductivity (EC) [µS cm−1]421

of 133 samples in the floodplain during winter (24-25 January 2019) and spring (27-29422

March 2019). The HI991300 portable EC meter was used and the location was recorded423

using a handheld GNSS receiver. We chose EC because prior research by (Chormański424

et al., 2011) indicated that EC is effective at discriminating between river water and other425

sources. We used random 50% of the measurement points to establish a linear regres-426

sion model explaining the EC by the river, rain, snowmelt, and groundwater fractions427

in the model nodes on the measurement days. The remaining 50% of the data was used428

for validation of the regression model using RMSE [µS cm−1] and bias [µS cm−1]. All429

measurement points were used to calculate the correlation coefficients between the wa-430

ter source fractions and EC.431

2.8 Changes of water sources fraction in the past and future climate432

Next to the simulated water sources fractions, we analyzed the mixing degree [-]

(Berezowski et al., 2019), which quantifies the mixing between river and floodplain (sum
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of snow, rainfall, and groundwater) water fractions:

d = 1− | friver − ffloodplain |
1− finitial

(6)

The changes in water sources fraction and mixing degree were assessed by calculating

a length [days] of a period during which they were greater than 0.75 and the water depth

was greater than 1 cm, in a hydrological year for each model node m in the floodplain:

lms =
Y∑

y=1

1 wy,m
s > 0.75 ∧ hy,m > 0.01

0 otherwise
(7)

where ws,t is a value of s water source fraction (river, snow, rainfall, or groundwater) or

the mixing degree d during a day y of a all days Y in a hydrological year, and ht,m is

water depth [m]. The total annual volume of surface water in the floodplain weighted

by the water sources fractions and the mixing degree in a hydrological year was calcu-

lated by performing a weighted integration using the following equation:

vs =
Y∑

y=1

M∑
m=1

h
y,mamws ht > 0.01

0 otherwise
(8)

The mean surface water depth (h̄) [m] and the length of a period with water depth greater433

than 1 cm (lh) [days] was calculated for each model node in each hydrological year.434

For future climate simulations, we calculated the above metrics for each EURO-435

CORDEX simulation and calculated the ensemble mean for each RCP scenario. Next,436

we used the ensemble means and historical simulations forced using 20CR data to cal-437

culate trends using the slope of the regression line, where the independent variable is the438

hydrological year. Finally, we used the t-test to investigate whether a trend estimate is439

significantly different from zero.440

3 Results441

3.1 Bias-corrected forcing data442

Each forcing data have similar statistics as meteorological observations for the pe-443

riod in which the quantile mapping parameters were identified (Table S6). Both for EURO-444

CORDEX and 20CR data the air temperature underestimated the observations mean,445

but had similar standard deviations. Snowfall and PET were bias-corrected near per-446

fectly in terms of mean and standard deviation. Total precipitation was overestimated447
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Figure 2. The 20CR and EURO-CORDEX data for the Biebrza catchment after bias correc-
tion. Temperature is the yearly mean and the remaining variables are yearly sums. The ribbons
present the 2.5-97.5 percentiles range for all simulations in a given RCP or historical experiment
for EURO-CORDEX data. The gap between historical and RCP ribbons is due to data presen-
tation in hydrological years, whereas the EURO-CORDEX simulations starts and finishes as
calendar years.

in reference to daily mean observations by 11.8% and 10.9% by 20CR and EURO-CORDEX448

mean respectively.449

The 20CR data fits the EURO-CORDEX ensemble in the overlapping historical450

period after bias correction (Figure 2). The 20CR data show no significant trends un-451

til the end of the first half of the 20th century. In the 1950-2015 period the air temper-452

ature trend of 0.02 K year−1 (p=0.0008) was observed. EURO-CORDEX data presented453

significant trends for ensemble yearly medians for all meteorological variables except PET454

for the RCP 2.6. The PET trends for the remaining RCPs were 0.24 (RCP 4.5), and 0.81455

mm year−1 (RCP 8.5). For RCP 2.6, RCP 4.5, and RCP 8.5 respectively the trends were456

-0.08, -0.16, and -0.31 mm year−1 for snowfall, 0.64, 0.81, and 1.61 mm year−1 for rain-457

fall, and 0.01, 0.02, and 0.05 K year−1 for air temperature.458

3.2 Model calibration459

The hydrological model calibration results formed a clear Pareto front with a min-460

imum RMSE of 0.19 m and maximum KGE of 0.86 (Figure S1). Out of these models461

we choose one with an RMSE of 0.24 m and a KGE of 0.69 as the best performing and462
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used it for further simulations. The calibrated parameter values (Table S7) had values463

within the range presented in the literature for porous media materials (Wösten et al.,464

1999; Gnatowski et al., 2010). The parameter search space was relatively wide for all ma-465

terial types, yet the saturated hydraulic conductivity presented an expected pattern with466

greater values for sands than for glacial till and relatively low value for peat. The Man-467

ning roughness coefficient had higher values for the Biebrza River and floodplain than468

reported in the literature (Chow et al., 1988).469

3.3 Hydrological validation470

Simulated water levels and surface water discharge matched the observations well471

(Figure 3). Daily discharge at the Osowiec and Burzyn stations, which are located at472

the inlet and outlet of the floodplain were only slightly overestimated with an absolute473

error that was 5% of the data range (Table 1). Similar simulated discharge errors were474

also present for Czachy, which is a major inlet into the floodplain, and Sztabin, which475

is located in the upper part of the catchment. Overall fit to observations expressed by476

KGE for discharge showed that Burzyn and Osowiec performed better than smaller sta-477

tions Czachy and Sztabin. A similar pattern was also present for correlation, which in-478

dicated that the discharge temporal variability was simulated better for Burzyn and Os-479

owiec than for Czachy and Sztabin.480

Simulated daily water levels showed a good overall fit as expressed by KGE (Ta-481

ble 1). The high values of the correlation coefficient and the visual comparison shows482

that within-year and multi-year (Figure 3) variability of water levels was simulated cor-483

rectly. The water levels were overestimated by 3% for Burzyn and underestimated by484

4% for Osowiec. The water levels RMSE were the same for both stations in the flood-485

plain and were more attributed to high flows in Osowiec and low flows in Burzyn.486
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Table 1. Error metrics for all available observations for river gauges. RMSE and bias are in

the same units as indicated in the table, remaining metrics are dimensionless. H and Q are water

levels and discharge respectively, RMSE / d.r. and bias / d.r. area RMSE and bias normalized to

the observations data range (d.r.), corr. is the correlation coefficient.

Station Units Period with

observations

RMSE RMSE / d.r. bias bias / d.r. Corr. KGE

H Burzyn m 1930-1935,

1946-2017

0.37 9% 0.12 3% 0.83 0.68

H Osowiec m 1881-1911,

1921-1923,

1925-1935,

1946-2017

0.37 10% -0.15 -4% 0.79 0.67

Q Burzyn m3 s−1 1951-2017 25.88 5% 5.14 1% 0.69 0.64

Q Czachy m3 s−1 1957-2017 2.33 4% -0.73 -1% 0.63 0.50

Q Osowiec m3 s−1 1951-2017 17.02 5% 2.79 1% 0.69 0.63

Q Sztabin m3 s−1 1951-2017 4.73 5% 0.84 1% 0.60 0.53
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Figure 3. Water levels (H) [m AMSL] and discharges (Q) [m3s−1] for river gauges. The lo-

cation of river gauges in presented in Figure 1 except for Sztabin, which is located in the upper

part of Biebrza River.

At the catchment scale, the model simulated groundwater levels very well, with the487

r2=0.99 (Figure 4). Clear deviation of simulated groundwater levels was observed for the488

household wells located in the upland. Individual well’s performance varied with the lo-489

cation in the model grid. In the floodplain, where the grid was finer than in the remain-490

ing parts of the model, the mean RMSE for nine wells was 23% of the data range with491

a 9% underestimation (Table S8). Outside the floodplain, i.e. in the middle and upper492

parts of the Biebrza valley, the mean RMSE was 36% and 34% respectively (Table S9).493

In these parts of the catchment simulated groundwater levels performed worse for cer-494
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tain wells with RMSE up to 76% of the observed data range, although all wells preserved495

the temporal variability as in the observed data (Table S9 and Figures S2-S5)496

y = − 1.93 + 1.02 x, R2 = 0.99
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Figure 4. Validation of the simulated groundwater levels using daily observations (usually in

ten days resolution) in 43 wells in the period 1994-2019 (N=18032). Solid line - regression line,

dashed line - 1:1 line.

3.4 Remote sensing validation497

The temporal variability of the SAR water extent correlated better to the flood-498

ing extent derived from the river water fractions (ariver, r=0.75) than to total extent es-499

timated from the water depth (ah, r=0.64) (Figure 5). Both ariver and ah water extents500

overestimated the SAR flooding extent maps for the periods of the lowest water levels501

when the Biebrza River was not flooding. In these periods the remote sensing data-set502

was not indicating surface water extent (including between the river banks, Figure S6),503

while the total area of Biebrza River and oxbow lakes in the floodplain is 2.97 km2. The504

Biebrza River and its tributaries were always visible in the hydrological model output.505

The hydrological model predicted a summer flood in 2017 that was not visible in the SAR506

data. Also, one summer flood in 2015 visible in SAR data was not simulated by the hy-507

drological model. There was a good agreement in the intersection of the true positive508

flooding extent from the remote sensing data-set with simulated water depth ih=0.77509
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and with simulated river fractions iriver=0.78. The lowest agreement occurred during low510

flow (below bankfull) periods with ih=0.19 and iriver=0.16, while during higher flows (above511

bankfull) the agreement was higher ih=0.82 and iriver=0.83.512
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2 ]

Flooding area source ad ariver SAR

Figure 5. Total area of flooding extent from remote sensing data-set (SAR), calculated for

simulated water depths > 5cm (ad) using Eq. 4, and calculated for river water fractions > 0.1

(ariver) using Eq. 5. There are 134 dates in which remote sensing data-set overlapped with the

simulation period are presented.

3.5 Hydrochemical validation513

The correlation with EC measurements was strongly negative for snow fractions514

(-0.62) and moderately positive for the river fractions (0.48). A very weak correlation515

was observed for rainfall (-0.07) and groundwater (0.00). The linear regression model,516

which explained the EC measurements with the water source fraction predictors, showed517

that all fractions were significant (p<0.001). The validation metrics for the regression518

model were r2=0.58, RMSE=91µS cm−1 (18% of data range), and bias b=12 µS cm−1
519

(2% of data range). The highest underestimation visible in the validation of the EC re-520

gression model was for measurements located next to an asphalt road located in a cen-521

tral part of the floodplain (~8.5 km from the Biebrza river) (Figure 6). The underesti-522

mated predictions are present in the direction of water flow from the road to the river,523

which indicates possible increased salinity due to car traffic.524
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Figure 6. Validation of the EC measurements regression model in the period 2019-2021

(N=64). Solid line - regression line, dashed line - 1:1 line.

3.6 Changes in Biebrza River flow in the past and future climate525

Simulated flow characteristics at the Burzyn (outlet) station showed that the 2.5-526

97.5% range simulations forced by the EURO-CORDEX historical experiments and the527

20CR had similar characteristics (Figure 7). The mean simulated water levels overes-528

timated the observations by 1.4% (20CR) and 2.7% (EURO-CORDEX mean) of the ob-529

served data range with the underestimated standard deviation by 26% (20CR) and 32%530

(EURO-CORDEX mean) (Table S10). In the case of discharge, the overestimation was531

0.5% (20CR) and 0.9% (EURO-CORDEX mean) with a standard deviation overestima-532

tion of 6.4% for models forced using 20CR data and an underestimation by 6.5% (mean)533

for model forced using EURO-CORDEX data.534

Within the 1970-2005 period no significant trends were observed in daily mean dis-535

charge or water levels for the models forced EURO-CORDEX or, 20CR data nor for the536

observation at the Burzyn station. However, in the 1951-2015 period, when observations537

overlap with the 20CR data a significant trend of 0.173 m3s−1year−1 (p=0.031) was ob-538

served; no significant trend was observed for water levels. For this period a similar trend539

of 0.057 m3s−1year−1 was observed in the model forced with the 20CR data however,540

it was not significant (p=0.527); in the complementary (1881-1950) period no trend (0.01541

m3s−1year−1, p=0.861) was observed. For the future climate impact simulations using542

the EURO-CORDEX data, significant trends (2006-2099) were observed only for RCP543
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Figure 7. Mean daily simulated discharge and water levels per year for the Burzyn station
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2.6 and 4.5. The trend for mean daily discharge was 0.092 m3s−1year−1 (p=0.005) for544

RCP 2.6 and 0.080 m3s−1year−1 (p<0.001) for RCP 4.5. In the case of mean daily wa-545

ter levels, the trend was 0.0015 m year−1 (p=0.007) for RCP 2.6 and 0.0007 m year−1
546

(p=0.032) for RCP 4.5.547

3.7 Changes of water sources fraction in the past and future climate548

The simulated daily mean volume of water from different sources did not show sig-549

nificant trends for the past climate forced with the 20CR data (Figure 8). In the sim-550

ulations forced by the EURO-CORDEX data for future climate positive trends were ob-551

served for the river, rainfall, groundwater, and river-floodplain mixed water volumes in552

RCP 2.6 and RCP 4.5. In the RCP 8.5 significant trends were observed only for rain-553

fall and snowmelt volume. For all RCP snowmelt volume trends were negative, however,554

the trend was not significant for RCP 2.6. The snowmelt water was characterized by the555

lowest volume in the floodplain area and was subjected to the highest relative changes556

in the RCPs 4.5 and 8.5.557

Length of a period in which water source fractions were dominant, the river-floodplain558

mixing degree was high, or water depth was greater than 1 cm was stable before 1950559
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with only a few nodes showing a slight increase for lrainfall(Figure 9). A similar situa-560

tion was observed in the simulations for the 1950-2015 period. Therein, however, lh and561

lriver increased in proximity to the Biebrza River. Also, lrainfall showed a more distinc-562

tive patch of increased vales when compared to the latter period.563

The trends for the ensemble mean in RCP 2.6 and 4.5 showed a similar pattern of564

increased lh and lriver in the proximity of the Biebrza River and increased lrainfall in the565

central part of the floodplain (Figure 9). The increase of lh and lriver was the greatest566

in RCP 2.6 out of all analyzed RCP scenarios and past climate periods. The increase567

of lgroundwater was observed in RCP 2.6 near the valley margin, which was not visible for568

RCP 4.5. Unlike RCP 2.6, RCP 4.5 showed a decrease of lgroundwater and lsnowmelt in the569

central part of the floodplain.570

The RCP 8.5 simulations showed that lh and lriver was small and clearly smaller571

than in RCP 2.6 and 4.5 while the change of lsnowmelt was similar as in RCP 4.5 (Fig-572

ure 9. The decrease of lgroundwater was the highest in RCP 8.5 and was visible in the cen-573

tral part of the floodplain (especially in the ditches), near the valley margin (northern574

part), and in the Biebrza River bed. Also, the increase of lrainfall was the highest in RCP575

8.5 and was present in almost the entire floodplain.576

In all simulations the length of the high river-floodplain mixing period, ld, increased577

with increasing lriver, yet, the trend in ld was smaller than the increase of lriver. An ex-578

ception of this was in the central part of the floodplain in all RCP scenarios, where lriver579

did not show a significant trend, but ld showed an increase. Therein lrainfall increased580

the most along with the lgroundwater increase in RCP 4.5 and the lgroundwater decrease in581

RCP 8.5. The ld did not change nearest to the river in the RCP scenarios, whereas the582

lriver changed the most. In this area, ld was high due to mixing at the beginning of the583

flood.584

The trend of surface water depth above 1 cm period, lh, resembles that of lriver in585

the area where both trends were significant, i.e. in the proximity of the river. The lh,586

unlike lriver, increased also in the central part of the floodplain, especially in the ditches,587

and next to the valley margin in all RCP scenarios and a few nodes in the 1950-2015 pe-588

riod. The highest lh increase in these areas was observed in the RCP 2.6, although the589

change in lsnowmelt, lgroundwater, and especially in lrainfall was the smallest in this scenario590

among all RCPs. Overall, the magnitude of lh change was the highest in RCP 2.6 (ac-591

companied by the highest magnitude of lriver change) although the area of significant changes592

was greater in remaining RCPs. Notably, in the areas where ld increased, but lriver trend593
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was not significant the lh also showed an increase. Still, lhincreased in areas further away594

from the rivers where neither ld nor lriver increased.595

Significant trends in mean daily water depth, h̄, were observed spatially only in the596

RCP scenarios for the future climate (Figure 10). The trends were the greatest in the597

proximity of the river, reaching some river nodes up to 6.3 mm year−1 in RCP 2.6, 4.0598

mm year−1 in RCP 4.5, and 0.7 mm year−1 in RCP 8.5 (Figure 10). The RCP 4.5 and599

8.5 scenarios predict a very small positive trend across the majority if the floodplain, whereas600

RCP 2.6 predicts such a trend in only remote parts of the floodplain and in ditches.601

4 Discussion602

4.1 Forcing data603

The forcing data matched the meteorological observations in terms of mean and604

standard deviation, which indicates, that the biases were removed correctly. The high-605

est deviations from observations were observed for the total precipitation and air tem-606

perature, which still, were comparable to other studies conducted in our study region.607

Mezghani et al. (2017) reported an RMSE of 15.5 mm month−1 (equivalent to about 0.51608

mm day−1) and the air temperature monthly mean RMSE of 1.1◦C (daily minimum)609

and 1.6◦C (daily maximum) using an ensemble of 9 EURO-CORDEX simulations. The610

differences between observations and bias-corrected air temperature did not have a large611

impact on the hydrological simulations, because the air temperature was not used to cal-612

culate PET in the hydrological model. Rather than that, the air temperature was only613

used to calculate the degree-days for LAI estimation. The bias-corrected PET data had614

very small deviations from the observations.615

The predicted change of total precipitation and air temperature varies between the616

model applied. In general, other studies show indicated an increase in yearly precipita-617

tion, and air temperature, and a decrease in snow cover by the end of the 21st century618

in our study area. Warszawski et al. (2013) showed that the yearly precipitation will in-619

crease by up to 10% and air temperature by 2-6 K the in RCP 8.5 scenario. Similarly,620

Schneider et al. (2013) showed that winter half-year precipitation will increase by 5-15%,621

with no changes in the summer half-year precipitation, mean annual temperature will622

increase by 2-2.5 K and the snow-cover period will decrease by 20-30 days. Also, Mezghani623

et al. (2017) predicted an increase of precipitation by 9.7% in RCP 4.5 and by 15% in624

RCP 8.5 and the air temperature increase of 2 K in RCP 4.5 and 3.6 K in RCP 8.5. Ex-625

cept that we were not able to compare the RCP 2.6 scenario, these results are consis-626

tent with the bias-corrected data used to force hydrological simulations in our study.627
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Figure 9. Changes of the period’s length when water depth, h, is greater than 1 cm (lh), river
water (lriver) or floodplain water (lgroundwater, lrainfall, and lsnowmelt) fractions are greater than
0.75, and the river-floodplain mixing degree, d, is greater than 0.75 (ld) annually. Only model
nodes with significant trends (p<0.05) are shown. The Grey polygon is the floodplain area, the
blue line is the Biebrza River; tributaries and ditches are not shown for clarity, please refer to
Figure 1 to identify their course.
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Figure 10. Changes in the annual mean daily water depth, h̄. Only model nodes with sig-
nificant trends (p<0.05) are shown. The color scale is clipped to the <-1, 1> mm year−1 range,
and the values outside this range are colored as equal to -1, or 1 mm year−1; the clipping affected
15% of the data in RCP 4.5 and 30% of the data in RCP 2.6 located in the proximity of the
river. The Grey polygon is the floodplain area, the blue line is the Biebrza River; tributaries and
ditches are not shown for clarity, please refer to 1 to identify their course.

4.2 Model development and calibration628

An alternative model calibration strategy to the one used in our study was to cal-629

ibrate the model on a coarser grid and then conduct only fine-tuning in the finer grid630

(von Gunten et al., 2014). We decided not to use this approach because our target grid631

was relatively coarse with a number of simplifications. Another approach was to calibrate632

the model to steady-state using average fluxes as boundary conditions, which was used633

in several studies involving IHMs (Partington et al., 2020). The advantage of this ap-634

proach is that the steady-state simulations require shorter simulation time than transient-635

state simulations for one or more events or hydrological years. We, however, were focused636

on the dynamic process of flood development, involving interactions of water from ground-637

water and surface water. Therefore the steady-state calibration for average conditions638

could lead to unrealistic parameter estimations during flooding, especially for surface wa-639

ter flow parameters for the floodplain.640

Still, our strategy with the screening of 800 quasi-random parameter sets was ad-641

equate for the model calibration problem. An advantage of this approach is that the ap-642

proximate total computation time is known a-priori and the problem is easily parallelized643

on a cluster. A disadvantage is that too sparse parameter space sampling may lead to644

unsuccessful calibration. The calibration results showed rather high equifinality when645
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only one optimization criterion was analyzed (either KGE or RMSE). However, select-646

ing a model with high KGE and low RMSE considerably decreased the number of be-647

havioral models. At the Pareto front, the relation between KGE and RMSE is non-decreasing648

(for RMSE < 0.5 m), meaning that the selection of a model with higher KGE results in649

higher RMSE, i.e., in worse groundwater simulation performance. As indicated in pre-650

vious studies (e.g. McCabe et al. (2005); Rientjes et al. (2013)), this stresses the impor-651

tance of using multi-objective calibration when compared to a single-objective calibra-652

tion.653

The porous media parameters were calibrated to realistic values when compared654

to literature values. This was not entirely the case for the overland flow parameters, where655

especially the Manning roughness coefficient was higher than expected. This was a re-656

sult of the generalization of the river channels in the model grid, which resulted in wider657

and straighter channels than in reality. Eventually, this generalization with realistic rough-658

ness parameter values would lead to increased simulated water velocity and too-low wa-659

ter levels. The effect of too high roughness was too high water levels during low flow when660

water was in the river bed. This effect was reinforced by the high obstruction height pa-661

rameter value in the river bed, which further increased the roughens for the lowest wa-662

ter levels. The high obstruction height was calibrated in the river bed to compensate for663

unnaturally-wide perpendicular cross-sections used in the model grid.664

The model’s purpose was to analyze hydrological conditions during flooding, fo-665

cusing more on the floodplain area, rather than on the river bed. Further, our aim was666

to analyze multiple long-term climatic scenarios that require very long computation times.667

Therefore, in our opinion that the simplifications used herein and the resulting unreal-668

istic surface water parameters in river were justified. While local-scale IHMs are often669

developed with very fine girds and short time steps, the regional-, country-, or continental-670

scale model use simplification strategies for model development. One of the strategies671

used in climate-change studies in regional-scale IHMs is to use aggregated water fluxes672

in monthly resolution (Goderniaux et al., 2009; Erler et al., 2019). Another strategy is673

to use a coarser grid, which preserves only key landscape features, such as bigger lakes674

or major river tributaries. Following this strategy, Goderniaux et al. (2009) used a model675

with 785 nodes per layer in a 480 km2 catchment, Erler et al. (2019) used 33092 nodes676

per layer in a 6800 km2, and Chen et al. (2019) used about 225000 nodes per layer in677

10.5 million km2 basin. This strategy also involves using relatively thick top layers, which678

were 1 m in Goderniaux et al. (2009) and 2.5 m in Chen et al. (2019). Our strategy with679

daily fluxes, 19297 nodes per layer in a 7000 km2 catchment (refined to 10436 nodes in680
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220 km2 floodplain) and about 0.75 m thick top layer makes the model comparable or681

higher resolution to the mentioned studies.682

4.3 Model Validation683

The multi-site validation presented in this study showed overall good performance684

of dynamic hydrological processes simulated in the model. However, a model performance685

degradation, such as increased RMSE for groundwater heads and decreased KGE for dis-686

charge, was observed outside the floodplain area (in the middle basin, upper basin, and687

upland). This was primarily a result of using a finer grid in the floodplain and a coarser688

grid elsewhere. Fraction of the error may be attributed to errors in the elevation of the689

groundwater wells or the DEM used for the model.690

From the flooding perspective, the model was unable to simulate correctly the high-691

est discharge peaks (above 250 m3s−1), which occurred five times in the 1951-2017 pe-692

riod. The remaining events were simulated with smaller errors both in terms of water693

levels and discharge. We attribute the inability to simulate the highest peak discharges694

primarily to the too-high roughness coefficients obtained during the calibration, which695

decrease the water velocity and effectively produce a smaller and wider flood. Partially,696

this problem may be also attributed to the coarse resolution (1◦x1◦) 20CR forcing data697

and bias-correction approach which was not able to suitably force the highest events. There-698

fore, our model is unsuitable for reliably predicting rare, extreme events in the past and699

future climate. However, it has demonstrated the capacity to predict normal hydrolog-700

ical behavior including flood events with shorter return periods.701

The validation with remote sensing showed good agreement with the spatial and702

temporal dynamics of river water flooding. This was not the case for the total flooding703

extent (from the river and all floodplain water sources). Even though a high (5 cm wa-704

ter depth) threshold was used to identify the total flooding extent, the simulation pro-705

vided a larger and longer-lasting extent than the remote sensing estimate. Apart from706

the bias in the remote sensing product caused due to spatial resolution which disabled707

identification of all permanent open water objects, the remote sensing validation indi-708

cates that SAR water extent estimation in a densely vegetated wetland area is problem-709

atic. Several attempts were made to the problem of vegetation, or other objects obscur-710

ing water extent by using auxiliary information such as elevation models (e.g. Mason et711

al. (2012)). In wetland cases, where a small surface water depth is frequently present and712

a flat land surface includes micro-topography features, these methods have limited ap-713

plicability. A recent approach involving multiple polarimetric decomposition models for714

SAR data in the Biebrza wetland has shown that with a C-band (the same band as in715
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our data set) SAR the identification of open water with vegetation emerging more than716

10 cm can be difficult Gierszewska and Berezowski (2022). The solution could be flood-717

ing extent mapping in wetlands using SAR sensors with longer (P, or L) wavelengths.718

The SAR flooding area correlated more strongly with the river water than with the719

total flooding extent. This was reflected in the number of small features visible both in720

SAR and river water flooding extents that diminished in the total flooding extent. This721

shows a potential application of SAR data in densely vegetated wetlands where they can722

be used to track the extent of river water flooding. This is not due to different sediment723

concentrations, which are used for mapping using optical sensors (Mertes, 1997; Park &724

Latrubesse, 2015), but due to high water depths in the river flooding zone, which can725

overtop vegetation. As this phenomenon was the case in Biebrza wetlands it does not726

necessarily have to be the case in other sites, which can still have too low water levels727

for detection of surface water.728

The EC of water can be used as an indicator of the surface water source, as it has729

higher values in the river than in floodplain water (Chormański et al., 2011). Our results730

are in agreement with this showing that EC correlated positively with river water frac-731

tions and negatively with snowmelt water fractions. Further, the hydrochemical valida-732

tion shows that all water source fractions are significant predictors of surface water EC,733

which indicates that the simulated fractions agree with the true water sources. Our pre-734

vious study (Berezowski et al., 2019) conducted for a single flooding event on a finer grid735

showed that the simulated fractions agree with water sources derived from a multi-parameter736

hydrochemical analysis. In the current study, due to high labor intensity, we were un-737

able to repeat the hydrochemical analysis.738

We put a lot of emphasis in this study on model validation which is a key step in739

impact model development in climate change studies. The validation for the Burzyn sta-740

tion was satisfactory and the lack of the trends in observed discharge and water levels741

were preserved in the model simulations (although one of the trends was significant in742

the observations and not significant in the simulations forced by the 20CR data). This743

indicates that the model passes the comprehensive evaluation criteria described in Krysanova744

et al. (2018) for the Burzyn Station. The remaining stations, situated in the upper parts745

of the catchment, have in general lower correlation coefficients, however, their KGE is746

still comparable to the KGE of the outlet. The comprehensive evaluation can be used747

as an indicator of a robust impact model (Gelfan et al., 2020), therefore, our model is748

suitable for climate change impact study of the floodplain area.749
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Needless to say, our evaluation was more comprehensive than described above. This750

was because the simulation of water mixing, which is a product of interaction between751

climate, groundwater, and river flooding, requires more confidence in the modeling re-752

sults than just agreement with observed water levels or discharge. Our remote sensing753

and EC evaluation criteria indicate that the model is suitable for the analysis of water754

mixing.755

4.4 Changes in Biebrza River flow in the past and future climate756

Our future climate impact simulations that show a positive trend (2005-2099) of757

the mean discharge in Biebrza River are consistent with Roudier et al. (2015), who have758

shown that less severe droughts and higher flooding discharges will be present in this re-759

gion. Two studies conducted for nearby catchments (Guber and Narewka) close to Biebrza760

also indicated decreased severity of droughts in RCP 4.5 (Meresa et al., 2016) and an761

increase of yearly maximum flows in RCP 4.5 and 8.5 (Osuch et al., 2016). A regional762

study also showed that both low and high flow will increase by 2100 in RCP 4.5 and 8.5763

in the Biebrza catchment, although the ensemble of simulations was inconsistent for the764

RCP 4.5 in the 2071–2100 period (Piniewski et al., 2017). On the other hand, our find-765

ing that no discharge trends (2006-2099) will be in the RCP 8.5 is inconsistent with Alfieri766

et al. (2015), who showed that the mean daily flow in Biebrza will increase by about 15%767

(1990-2080) in the RCP 8.5.768

The RCP 2.6 ensemble means in our study are associated with the highest uncer-769

tainty, because only five EURO-CORDEX simulations were available. Therefore, our find-770

ings that the highest trend (2006-2099) in mean discharge will be observed in RCP2.6771

have to be considered less robust than the results of the trends in remaining RCPs. Still,772

this finding is partially supported by Marx et al. (2018), who showed that the 10-20%773

change in the mean low flow in Biebrza River will take place under 2K air temperature774

increase, whereas under 1.5K and 3K scenarios the change will be between -10% and 10%.775

Projections of future hydrological impact often disagree due to differences in forcing-776

data sources and processing, impact models used, impact indicators, and methods of com-777

parison with the reference period (Z. W. Kundzewicz et al., 2016). All of these reasons778

are relevant for comparisons presented in this section. The aim of this study was not to779

compare the climate change impact on the Biebrza River with other studies but to in-780

vestigate the impact on the water mixing using the best methods available. We used all781

available EURO-CORDEX simulations which provided the required forcing data. How-782

ever, these simulations used often different GCMs or RCMs than in the discussed stud-783

ies. Moreover, our simulations were limited by the use of data from only one RCM (but784

–33–



manuscript submitted to Water Resources Research

multiple GCMs), while most of the remaining studies used more than one RCM. Also,785

we ran continuous simulations in a daily resolution for the 1881-2099 period, which was786

used to calculate trends and their statistical significance for variables relevant to our study.787

This was not the case in the other studies discussed in this section, which calculated a788

relative change of low- or high-flow indicators with respect to a reference period. Finally,789

we used a finer spatial resolution and/or better physical representation of hydrological790

processes in the HydroGeoSphere model than in models used in these studies.791

4.5 Changes of water sources fraction in the past and future climate792

Water source fractions were stable in the 1881-2015 period in terms of the asso-793

ciated volume of water, which coincide with no trends in the forcing data. Since the sec-794

ond half of the 20th century, a shift from rainfall replacing snowmelt fractions dominance795

was observed in the central part of the floodplain. In parallel, river fractions and high796

water depths persisted longer in the proximity of the river due to the rainfall accumu-797

lation in the whole catchment. Neither of these changes was related to a significant trend798

in rainfall or snowmelt in the forcing data, nor resulted in a significant change in the flood-799

ing volume of these water sources.800

In the RCP 2.6 volume of river and rainfall water significantly increased during the801

2005-2099 period. An increase in rainfall with a significant, but eight-fold smaller de-802

crease in snowfall, and no change in PET resulted in overall wetter conditions. This trans-803

lated not only to increased river discharge, and high river fraction persistence but also804

to longer-lasting high groundwater fractions and surface water depth. Effectively, the805

period of river-floodplain water mixing was longer in the proximity of the river by form-806

ing a clear belt and resulting in a significantly increased volume of mixing water.807

A similar situation was observed in RCP 4.5, but due to a two-fold higher decrease808

of snowfall and similar magnitude of rainfall trend as in RCP 2.6 period of high snowmelt809

fractions shortened during the 2005-2099 period. In addition to that, a greater decrease810

in PET in RCP 4.5 than in RCP 2.6 resulted in less wet conditions. As a result, a lesser811

trend of river discharge and water levels was observed. Since groundwater discharge is812

more related to overall drier or wetter conditions rather than to instantaneous fluxes of813

water the decrease in snowmelt water resulted in longer dominance of groundwater frac-814

tions in the river proximity in RCP 4.5. Despite drier conditions in RCP 4.5, the longer815

periods of groundwater, rainfall, and river fractions in this area affected in the river-floodplain816

mixing zone last longer in greater areas than in RCP 2.6.817
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A different situation was observed in RCP 8.5, where snowfall nearly ceased and818

the increase of rainfall was in great part balanced by the increase of PET resulting in819

no trends observed in discharge or water levels in the 2005-2099 period. The stability820

of discharges was not accompanied by the stability of the volume of water from differ-821

ent sources, as rainfall volume increased and snowmelt volume decreased. The most dis-822

tinctive pattern of high groundwater fractions persistence decrease was observed in RCP823

8.5. Such a big groundwater fraction decrease is an indicator of drought conditions lo-824

cally in the central part of the floodplain. This was however balanced by longer persis-825

tence in the northern part of the floodplain and near the valley margin, resulting in no826

significant trend in groundwater volume. The area in which the river-floodplain water827

mixing period increased was similar to in RCP 4.5 but more patchy, and the magnitude828

of the trend was smaller. Despite this spatial pattern the trend of mixing water volume829

did not change significantly. Unlike in other scenarios, in RCP 8.5 longer lasting high830

rainfall fractions resulted in a zone of a shortened period of river-floodplain mixing in831

the NE part of the floodplain, near the river.832

Trends in mean water depth and inundation period length did not align with the833

trends of water source fractions. Overall, the trends of mean water depth were rather834

small except in the river proximity. Also, greater variability was present in the water source835

fraction trends than in water depth or inundation period trends.836

4.6 Implications for modeling837

When taking into account distributed hydrological processes, the opposite direc-838

tions of changes can be present within one floodplain. These changes either combine with839

each other to amplify a signal in the lumped volume or cancel each other and the sig-840

nal in the lumped volume attenuates. A comparison of the lumped volume of water as-841

sociated with different fractions and the accompanying spatial patterns in the floodplain842

area shows the advantage of using fine, distributed model output. As illustrated for the843

1951-2015 period, the climatic signal was lost in the lumped output due to averaging with844

other effects, whereas a clear trend pattern was visible spatially. A similar situation was845

observed in the RCP 8.5 scenario, where the greatest spatial trends were present in ground-846

water fractions persistence, but the trend in groundwater volume was not significant. This847

is relevant if upon the lumped or distributed impact model output another process (e.g.848

ecological, or hydrochemical) would be modeled or a management decision would be un-849

dertaken.850

This links to another advantage of using IHMs in climate change scenarios, which851

is revealed when data on all boundary conditions are not explicitly available temporar-852
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ily and spatially. Climate influences both surface water and groundwater and thereby853

affects also feedback between the two domains expressed as groundwater-surface water854

interactions. The assumption about surface water infiltration, or groundwater discharge855

is difficult to make properly for simulations with long time horizons, whereas, they are856

required for surface water models that are not integrated with groundwater models. This857

is not the case for catchment-scale IHMs, where surface water and groundwater simu-858

lations are simultaneously forced by the climate data and the time-variable feedback be-859

tween the two domains are preserved.860

As illustrated in our study, the period of inundation with water depth above 1 cm,861

was also influenced by climate outside the river water flooding zone. Moreover, the trend862

of this period was not correlated to the distance from the river, as it increased near the863

river, then decreased, and increased again in the central part of the floodplain (RCP 4.5864

and 8.5), or it increased in the entire floodplain (RCP 2.6). The trend in water depth865

change was correlated to the distance from the river, however, significant positive trends866

were observed both in areas dominated by the river and floodplain water. Furthermore,867

water depth trends in RCP 2.6 showed that large areas of the floodplain did not have868

any trends, while the most remote parts of the floodplain had a significant positive trend.869

This depicts another advantage of IHMs, which is the representation of water depths in870

the floodplain. Hydrodynamic models for 2D surface water routing perform very well871

in simulating river water flooding extent, whereas, are unable to simulate inundation from872

other sources, such as groundwater, without coupling with different models (Appledorn873

et al., 2019). Still, some studies use a surface-water-only model to analyze long-term flood-874

plain inundation changes (Veijalainen et al., 2010; Wen et al., 2013). While in some ar-875

eas a lack of groundwater coupling may not influence the results, in other areas it may876

be a source of bias in simulated inundation extent.877

Although not discussed in this study, interactions between water sources may in-878

fluence the surface water velocity field in the floodplain in reference to a situation when879

river water is the sole inundation source. This may further influence the sedimentation880

pattern in the floodplain due to the settling velocity parameter of the particles. Several881

climate impact studies analyze the floodplain sedimentation patterns by taking into ac-882

count the major water sources, such as rivers (Park et al., 2022) or sea level (Manh et883

al., 2015). Whereas, as illustrated in this study, the river-floodplain mixing zone is rel-884

atively wide and it varies under climate change, which may affect sedimentation patterns.885
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4.7 Implications for ecological processes886

Mixing of water from different sources creates biogeochemical hot spots and hot887

moments, such as denitrification (McClain et al., 2003). A number of studies have an-888

alyzed denitrification spatially in inundated floodplains to reveal that it is strongly af-889

fected by connectivity with river water (Forshay & Stanley, 2005; Racchetti et al., 2011;890

Jones et al., 2014; Scott et al., 2014). Our study shows that, that the river-floodplain891

water mixing volume, extent, and persistence varies with climate change, therefore den-892

itrification patterns can also be affected. This variability was visible much better in the893

spatial pattern than in the lumped, water volumes. Therefore, improvement in denitri-894

fication modeling at floodplain (Hallberg et al., 2022) or catchment (Adame et al., 2019)895

scale or in the use of scaling relationships (O’Connor et al., 2006; Tomasek et al., 2017)896

could be achieved by introducing additional variables related to groundwater discharge,897

river water, or the river-floodplain mixing extents.898

Another process, that is related to the extent of water from different sources is veg-899

etation development (Keizer et al., 2014; Park & Latrubesse, 2015). Modeling of veg-900

etation development under climate change may be hampered because studies using the901

process-based model (Politti et al., 2014), a statistical approach (Mosner et al., 2015)902

do not include hydrodynamic feedback between water from different sources. As shown903

by (Gattringer et al., 2019) predictors from an IHM improve habitat modelling in com-904

parison to groundwater, or surface water only predictors scenarios. Our results indicated905

that in some scenarios the trends were not present in water levels, or discharges while906

they were present in the persistence of dominant water sources. Therefore we believe,907

that the inclusion of water sources extents predictors could improve vegetation models908

further. We are not aware of any study that used IHM-simulated water sources to model909

vegetation development or distribution.910

A more recent study conducted in the Biebrza floodplain revealed that the vege-911

tation productivity was better predicted by the zone of nutrients rich sediment deposi-912

tion, located close to the river, rather than by the river water extent or the total inun-913

dation extent (Keizer et al., 2018). As mentioned in Section 4.6, sedimentation is related914

to water velocity, which may decrease where water sources with different momentum mix.915

Therefore, the mixing degree, d, which was strongly variable under climate change in this916

study, can potentially be a candidate for high productivity vegetation zone predictor in917

temperate floodplains. This, however, was not tested here and should be investigated918

in a future study.919
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4.8 Implications for management920

The Biebrza floodplain, as part of a national park, has been subjected to active pro-921

tection measures. An increase in water levels through the construction of dams, or veg-922

etation removal by mowing, allowed, to some extent, to diminish the potential effect of923

climate change in this area (Berezowski et al., 2018). Our results together with other ex-924

periments discussed herein show that the analysis of water sources and their mixing may925

have a considerable ecological effect. However, at this point, more models are needed to926

asses this effect more precisely spatially and temporarily. Therefore, the current local927

management strategy could be to increase the resilience of the wetland ecosystem and928

implementation of adaptive management (Lawler, 2009). Except that, the local man-929

agement strategies may be somewhat challenging, as tools for preserving the shape and930

duration of water sources’ zones are limited. On the other hand, our results have shown931

that the spatially distributed trends in water source fractions were driven solely by cli-932

mate change, as our model neglected other divers (water use, land-use change, etc.). There-933

fore, global actions limiting climate change impact on wetlands driven by national and934

international policies (Moomaw et al., 2018) seem to be an appropriate measure to limit935

the shift in the extent of water from different sources.936

4.9 Note on hardware requirements937

The simulations were run on the Tryton cluster, which has 3215 Intel Xeon Pro-938

cessors (E5 v3, 2.3 GHz, 12-core) with 128 GB RAM, resulting in a total of 1.792 PFLOPS.939

We split the simulations into 978 smaller tasks (a three-year simulation period with a940

two-year warm-up period), to use the resources in parallel and to fit into 72h wall time941

for a single simulation. The cluster resources were shared with other users therefore it942

took about five months to finish all computations. The total output data produced by943

the models accounted for about 20TB.944

5 Summary and conclusions945

Simulations of surface water source fractions in a natural wetland floodplain over946

a two-century period reveal that by 2099 the projected future climate change will sig-947

nificantly alter the patterns that were relatively stable in the 1881-2015 period. Our re-948

sults show that analysis of the lumped output of the model was less sensitive to depict949

the climate change effect that was visible when the trends were analyzed spatially in the950

floodplain. Different future climate scenarios showed very variable impacts on water source951

fractions, which were often counterintuitive. In the RCP 2.6, which projected the least952

climate change in the study area, we observed the highest magnitude of changes related953
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to the increase in river discharges, water levels, and river water fractions. In the RCP954

8.5 scenario, which projected the greatest increase in PET and rainfall accompanied by955

the greatest decrease in snowfall, these trends were less significant, while only this sce-956

nario projected dry conditions exhibited by a decrease of groundwater fractions in the957

inundation. The trends in water source fractions had different spatial patterns and showed958

greater sensitivity to climate change than trends in water depth and inundation dura-959

tion.960

This complex hydrological impact was simulated by the IHM, which allowed us to961

model interactions between groundwater and surface water and limit the assumptions962

about hydrological fluxes in the top layer of the model to the meteorological forcing. This963

is the first study that simulated the climate impact on water source fractions in the in-964

undation and the longest application of IHM in terms of the simulation period. Hydro-965

logical impact studies are always related to uncertainty, which we limited here by multi-966

variable verification and projection of future impact using an ensemble of 10 EURO-CORDEX967

simulations (only 4 in RCP 2.6).968

We showed that the water source fractions are sensitive to the climate in a natu-969

ral temperate zone wetland floodplain. This fact has several implications for other mod-970

eling studies, ecological processes, and management in similar wetlands. Modeling prob-971

lems should be carried out using IHMs to depict proper inundation or sedimentation pat-972

terns spatially, because, even if the water sources fractions are not explicitly simulated973

using HMC, IHMs capture the interactions between water from different sources which974

produce inundation outside the river water zone and changes the velocity field. Since eco-975

logical processes, such as denitrification or vegetation development, are in part related976

to water sources’ zonation and their mixing, these variables should be taken into account977

in models, especially in climate change impact studies. Finally, the managers have lim-978

ited tools in shaping the surface water zonation and extent, therefore except for increas-979

ing the wetlands resilience, and adaptive management using an IHM output, global ac-980

tions aimed at decreasing climate change impact should be the main priority.981
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Supplement1412

Table S1. Forcing data sources used in this study. The EURO-CORDEX data were available
for different RCP simulations. Each RCP simulation period was 2006-2100 followed by histori-
cal simulations of different lengths. Observations indicated here were used only for hydrological
model forcing, not for bias correction.

Data (Institute-GCM) Period RCP

CNRM-CERFACS-CNRM-CM5 1970-2100 4.5, 8.5

ICHEC-EC-EARTH 1970-2100 2.6, 4.5, 8.5

MOHC-HadGEM2-ES 1970-2100 2.6, 4.5, 8.5

MPI-M-MPI-ESM-LR 1970-2100 2.6, 4.5, 8.5

NCC-NorESM1-M 1970-2100 2.6, 4.5, 8.5

CCCma-CanESM2 1951-2100 4.5, 8.5

CSIRO-QCCCE-CSIRO-Mk3-6-0 1951-2100 4.5, 8.5

IPSL-IPSL-CM5A-MR 1951-2100 4.5, 8.5

MIROC-MIROC5 1951-2100 2.6, 4.5, 8.5

NOAA-GFDL-GFDL-ESM2M 1951-2100 4.5, 8.5

Observations 2005-2019 -

20CR 1880-2005 -
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Table S2. Data sources for hydrological validation. Hydrological variables are H - water levels
in rivers, Q - discharge, and G - groundwater head. Periods of missing data are not indicated in
this table. Unreferenced data sources are available upon request from the authority.

Data source Variables Stations Period Frequency

Russian hydrological
yearbook (Anonymous,

1912)

H Osowiec 1881-1910 daily

Polish hydrological
yearbook Anonymous
(1932, 1970, 1980)

H, Q Q and H: Burzyn,
Osowiec, Q: Czachy,
Rudzki, Sztabin

1918-1980 daily

IMGW unpublished data
archive

H Osowiec 1924 daily

IMGW Public data
repository Anonymous

(2019)

H, Q Q and H: Burzyn,
Osowiec, Q: Czachy,
Rudzki, Sztabin

1951-2019 daily

Biebrza National Park
database

G 41 groundwater wells in
the national park

1994-2019 10-days (median)

Household wells
measurements

G 2 wells in the Biebrza
catchment

1999-2002 once per year

Table S3. Calibration parameters ranges with their constrains and transformations

Porous media
parameters

units class min. max. Constrains and transformation

Van Genuchten
model inverse of
the air-entry
pressure head, α

m−1
glacial
till

0.008 0.03
-

peat 1.2 2.6
sand 0.008 0.03

Van Genuchten
model pore-size
distribution index,
β

-
glacial
till

1.3 3
-

peat 1.3 1.65
sand 1.3 3

Saturated
hydraulic
conductivity

ms−1
glacial
till

1.00E-
07

5.00E-
03 Logarithmic, with base=10,

transformation.peat 1.00E-
07

5.00E-
04

sand 1.00E-
07

5.00E-
03

Porosity -
glacial
till

0.32 0.45
-

peat 0.8 0.92
sand 0.32 0.45
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Table S4. Calibration parameters ranges with their constrains and transformations

Evapotranspiration
parameters

units class min. max. Constrains and transformation

transpiration
fitting parameter,
c1

- Ten
vegeta-
tion
classes

0.001 1.3 One parameter value was selected randomly
[0-1] for all vegetation types and scaled using
an inversion of maximum leaf area index for
a given vegetation type.

Lower limit of soil
saturation for
transpiration, e1

- upland,
wet-
land

0.133 1 The evaporation limiting saturations: e1 and
e2 parameters were derived simultaneously
for each vegetation type from the gamma
distribution using: 1− (g (p, s) /g (1, s)),
where g is a function returning quantiles of
gamma distribution, p is the probability of
0.05 for e1 and 0.6 for e1, and s [0-1] is
shape parameter of gamma distribution
provided during the calibration. The rate
parameter of the gamma distribution is 1.

Upper limit of soil
saturation for
transpiration, e2

- upland,
wet-
land

0.08 0.951

field capacity, fc -

upland 0.3 0.951 The transpiration limiting saturations
parameters: wp, fc, ox, and aox parameters
were derived simultaneously for each
vegetation type from the gamma distribution
using: 1− (g (p, s) /g (1, s)), where g is a
function returning quantiles of gamma
distribution, p is the probability of 0.001 for
wp, 0.05 for fc, 0.6 for ox and 0.99 for aox,
and s [0-1] is shape parameter of gamma
distribution provided during the calibration.
The rate parameter of the gamma
distribution is 1.

wetland 0.3 0.87

wilting point, wp - upland 0.09 0.41 -wetland 0.09 0.33

oxic limit, ox - upland 0.46 1 -wetland 0.46 0.99

anoxic limit, aox - upland,
wet-
land

0.56 1 -
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Table S5. Calibration parameters ranges with their constrains and transformations

Surface water flow
parameter

units class min. max. Constrains and transformation

Manning roughness
coefficient ms− 1

3

Lower
Biebrza

0.06 0.25

-Major
rivers

0.015 0.05

Other
rivers

0.02 0.05

Upland 0.015 0.05
Upper
Biebrza

0.02 0.2

Flood-
plain

0.02 0.2

obstruction height m
Major
rivers

0.05 0.4
-

Other 0.05 0.4
Flood-
plain

0.01 0.4

Table S6. Daily mean values of observations and bias-corrected 20CR and EURO-CORDEX
data. A summary is presented for the period 1970-2005 except the PET, which was summarized
for 1979-2005. The 20CR diff. row presents the observations subtracted from 20CR values. The
EURO-CORDEX mean diff. row presents the mean difference of observations subtracted from
each EURO-CORDEX simulations values.

Data source Total
precipitation

[mm]

Snowfall [mm] PET [mm] Air
temperature [K]

mean sd mean sd mean sd mean sd

Observations 1.84 3.40 0.24 1.09 1.70 1.42 280.20 8.48

20CR 2.06 3.78 0.23 1.04 1.73 1.45 279.24 8.56

CNRM-CERFACS-CNRM-CM5 2.08 3.65 0.24 1.05 1.69 1.41 279.13 8.46
ICHEC-EC-EARTH 2.08 3.62 0.24 1.03 1.69 1.41 279.14 8.45
MOHC-HadGEM2-ES 2.06 3.52 0.24 1.02 1.70 1.42 279.18 8.45
MPI-M-MPI-ESM-LR 2.08 3.61 0.24 1.04 1.70 1.42 279.22 8.40
NCC-NorESM1-M 2.07 3.47 0.24 1.04 1.69 1.41 279.12 8.50
CCCma-CanESM2 2.00 3.69 0.23 1.01 1.71 1.42 279.25 8.76

CSIRO-QCCCE-CSIRO-Mk3-6-0 2.01 3.81 0.24 1.04 1.70 1.42 278.90 8.86
IPSL-IPSL-CM5A-MR 2.03 3.68 0.24 1.10 1.70 1.41 279.12 8.71

MIROC-MIROC5 1.99 3.67 0.24 1.09 1.71 1.42 278.92 8.78
NOAA-GFDL-GFDL-ESM2M 2.01 3.79 0.24 1.10 1.70 1.42 278.95 8.92

20CR diff. 0.22 0.39 0.00 -0.04 0.02 0.03 -0.96 0.08
EURO-CORDEX mean diff. 0.20 0.26 0.00 -0.04 0.00 0.00 -1.11 0.15
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Table S7. Calibrated parameters for the best model.

Parameter Units Material Value

Porous media parameters

Van Genuchten model inverse of the air-entry pressure
head, α m−1

glacial till 0.0136
peat 2.054
sand 0.025

Van Genuchten model pore-size distribution index, β -
glacial till 1.735

peat 1.535
sand 2.632

Saturated hydraulic conductivity ms−1
glacial till 6.56E-07

peat 4.52E-07
sand 2.24E-03

Porosity -
glacial till 0.36

peat 0.86
sand 0.39

Evapotranspiration parameters

transpiration fitting parameter, c1 - Ten vegetation classes 0.06 to 0.21

Lower limit of soil saturation for transpiration, e1 - upland 0.996
wetland 0.858

Upper limit of soil saturation for transpiration, e2 - upland 0.889
wetland 0.636

field capacity, fc - upland 0.922
wetland 0.623

wilting point, wp - upland 0.376
wetland 0.206

oxic limit, ox - upland 0.999
wetland 0.846

anoxic limit, aox - upland 1
wetland 0.936

Surface water flow parameter

Manning roughness coefficient ms− 1
3

Lower Biebrza 0.191
Major rivers 0.042
Other rivers 0.020

Upland 0.019
Upper Biebrza 0.152
Floodplain 0.128

obstruction height m
Major rivers 0.312

Other 0.370
Floodplain 0.064
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Table S8. Error metrics for groundwater wells observations in the floodplain. RMSE / d.r.
and bias / d.r. area RMSE and bias normalized to the observations data range (d.r.). Errors for
individual wells in the middle and upper Biebrza basins are presented in Table S9.

Well Period with observations RMSE [m] RMSE / d.r. bias [m] bias / d.r.

BPN116 1998-2010 0.28 21% -0.15 -11%

BPN121 1998-2010, 2016-2019 0.25 19% -0.06 -4%

BPN122 1998-2010, 2016-2019 0.33 22% 0.16 10%

BPN123 1998-2010 0.23 22% -0.08 -8%

BPN124 2010-2019 0.25 28% -0.11 -12%

BPN125 2010-2012, 2014-2019 0.27 22% -0.14 -11%

BPN126 2010-2019 0.25 18% -0.07 -5%

BPN167 2010-2019 0.31 26% -0.19 -16%

BPN168 2010-2019 0.38 32% -0.28 -24%

mean 0.28 23% -0.10 -9%
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Table S9. Error metrics for groundwater wells observations in the middle and upper basins.
RMSE and bias are in the same units as indicated in the table, remaining metrics are dimension-
less. RMSE / d.r. and bias / d.r. area RMSE and bias normalized to the observations data range
(d.r.).

Well Period with observations RMSE RMSE / d.r. bias bias / d.r.

BPN132 1998-2019 0.34 24% 0.05 4%

BPN133 1998-2019 0.34 23% 0.06 4%

BPN134 1998-2019 0.33 25% 0.10 8%

BPN135 1994-2015 0.28 25% -0.14 -13%

BPN136 1994-2019 0.24 21% 0.04 4%

BPN137 1994-2019 0.29 23% -0.09 -7%

BPN139 1994-2019 0.33 26% -0.16 -12%

BPN140 1994-2019 0.43 33% -0.32 -24%

BPN141 1994-2019 0.33 26% -0.14 -11%

BPN142 1994-2019 0.35 26% -0.13 -10%

BPN143 1994-2019 0.36 27% -0.18 -13%

BPN144 1994-2019 0.40 26% -0.23 -15%

BPN145 1994-2015 0.54 44% -0.47 -38%

BPN147 1994-2019 0.60 43% -0.55 -39%

BPN150 1996-2019 0.39 29% -0.29 -21%

BPN152 1996-2019 0.79 50% -0.73 -46%

BPN179 2010-2019 0.69 76% -0.50 -55%

BPN182 1996-2019 0.83 58% -0.78 -55%

BPN184 1996-2019 0.80 60% -0.75 -56%

BPN186 1998-2019 0.71 48% -0.63 -43%

BPN189 1996-2019 0.38 26% -0.27 -19%

BPN190 1996-2019 0.31 20% -0.15 -9%

BPN191 1994-2019 0.33 22% -0.20 -13%

BPN207 2012-2017 0.38 33% -0.32 -28%

BPN208 2012-2015 0.46 55% -0.42 -50%

BPN209 2012-2017 0.34 34% -0.26 -25%

BPN210 2012-2015 0.52 60% -0.48 -55%

BPN211 2012-2017 0.51 47% 0.48 44%

BPN213 2012-2017 0.27 22% -0.16 -13%

Middle basin mean 0.44 36% -0.26 -21%

BPN155 1998-2019 0.59 37% -0.45 -28%

BPN156 1998-2019 0.45 36% -0.36 -29%

BPN158 1998-2019 0.32 29% -0.17 -16%

Upper basin mean 0.46 34% -0.33 -24%–58–
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Table S10. Statistics for the daily water levels and discharge at the Burzyn station in the
1970-2005 period, when both 20CR, and EURO-CORDEX forcing data to overlap with obser-
vations. The 20CR diff. row presents the observations subtracted from values simulated using
model forced with 20CR data. The EURO-CORDEX mean diff. row presents the mean difference
of observations subtracted from values simulated using models forced with EURO-CORDEX
data.

Source Water level [m amsl] Discharge [m3s−1]

mean sd mean sd

Observations 101.36 0.62 38.07 31.91

20CR 101.41 0.46 40.35 33.95

CCCma-CanESM2 101.42 0.46 40.88 31.30
CNRM-CERFACS-CNRM-CM5 101.50 0.44 45.51 30.93
CSIRO-QCCCE-CSIRO-Mk3-6-0 101.40 0.40 36.78 26.19

ICHEC-EC-EARTH 101.47 0.42 42.63 30.71
IPSL-IPSL-CM5A-MR 101.48 0.40 42.25 28.46

MIROC-MIROC5 101.40 0.45 38.73 29.85
MOHC-HadGEM2-ES 101.50 0.45 45.71 32.43
MPI-M-MPI-ESM-LR 101.53 0.40 46.85 31.58
NCC-NorESM1-M 101.51 0.40 44.72 28.74

NOAA-GFDL-GFDL-ESM2M 101.46 0.40 40.59 28.13

20CR diff. 0.05 -0.16 2.28 2.04

EURO-CORDEX mean diff. 0.11 -0.20 4.40 -2.08
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Figure S1. Average RMSE for five groundwater wells and average KGE for two stations
calculated for 800 calibration runs. The red point indicates the selected model.
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Figure S2. A Simulated (black) and observed (red) water levels for groundwater wells.
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Figure S3. A Simulated (black) and observed (red) water levels for groundwater wells.
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Figure S4. A Simulated (black) and observed (red) water levels for groundwater wells.
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Figure S5. A Simulated (black) and observed (red) water levels for groundwater wells.

Figure S6. Flooding extent from remote sensing data-set (SAR), simulated HGS surface wa-
ter depth, and HMC river water fractions for 11 increasing outlet water levels. Water depths > 1
m were plotted as equal to 1 m in this plot to have consistency in the color scale.
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