
American Geophysical Union Fall Meeting, December 9-13, 2019, GC33F-1433

STABILIZING CARBON DIOXIDE
Stephen E. Schwartz

Brookhaven National Laboratory, Upton NY
ses@bnl.govwww.bnl.gov/envsci/schwartz

Acknowledgments. Supported by the U.S. Department of Energy under Contract 
No. DE-SC0012704. Manuscript under review, available on request. 

MOTIVATION
Carbon dioxide is the major anthropogenic greenhouse gas, 
derived mainly from fossil fuel combustion for energy production. 

How much would global CO2 emissions need to be reduced to 
stabilize atmospheric CO2 over the next century?

At present CO2 response to hypothetical emission changes is 
highly uncertain, based on multiple carbon cycle models. 

This uncertainty greatly limits planning of energy futures and 
design of strategies to achieve proposed global temperature 
targets.  

APPROACH
Analyze the CO2 budget: Stocks in four compartments – 
Atmosphere, Mixed-Layer ocean, Deep Ocean, Terrestrial 
Biosphere – and fluxes between these compartments, constrained 
by observations and pertinent physical laws. 

Determine transfer coefficients obtained from the budget.

Represent the CO2 budget by differential equations in stocks of the 
compartments

Examine observables, especially CO2 mixing ratio, over the 
Anthropocene thus far and for hypothetical future emissions. 

BACKGROUND
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 AFTER ABRUPT CESSATION OF EMISSIONS 
Calculated and redrawn from recent publications

Current estimates vary by an order of magnitude!  

DECAY OF EXCESS ATMOSPHERIC CO2

modified from ses, jgr, 18
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Lifetime (50 – 65 yr) is much shorter than in prior studies..

TRANSFER COEFFICIENTS
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kam = Fam / Sa ; global mean deposition velocity

kmdzm = kdmzd = vp; global mean piston velocity, 5.5 m yr

k By differenceat Q tot - dSa /dt( )/Sa,ant ] 2016= [ - dSm/dt - dSd/dt

Geophys ppty: from obs’d 
global heat uptake rate

Geophysical property

Acid dissoc chemKam = (dSa/dSm)eq , a known function of Sa, 5–10kma = kamKam; 

CO  -specific

pi pi

kta = kat (  /St
pi Sa

pi ) Preindustrial steady state

Three independent, observationally constrained parameters: kam , vp, and kat
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Based on present budget

 - F tm / St
pi pi

  

Four coupled ordinary differential equations.
Slightly nonlinear because kmidepends    weakly on Si.Sm

dSa
dt

= kam Sa Sa( )+ kma Sm Sm( ) katSa + ktaSt Ftm
pi +Qff (t)+Qlu(t)

dSm
dt

= kma kmdSm + kdmSd +Ftm
pi Fpc

dSd
dt

= kmdSm kdmSd +Fpc

dSt
dt

= katSa ktaSt Qlu(t)

eq eq

kam Sa Sa( )eq Sm Sm( )eq

kma

Requirements: Transfer coefficients, emissions, 
   initial conditions

RATE EQUATIONS

REVISED CO2 BUDGET

Every number comes from somewhere: Measurement, universal 
   transfer coefficients, equilibria, steady state, detailed balance, 
   conservation of matter.

Based on (and substantially modified from) AR4 (Figure 7.3) 
after Sarmiento and Gruber (Phys. Today, 2002)

About half of anthropogenic emitted CO2 is taken up by long term 
   reservoirs: Deep Ocean and Terrestrial Biosphere. 
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IMPLICATIONS
OF THE BUDGET

Ratio of Stock to Net Flux out

TURNOVER TIME 
OF ANTHROPOGENIC CO2

Stocks in Atmosphere and Mixed-layer ocean are 
in near equilibrium and treated as a single stock.

Turnover time is a robust measure of the lifetime of 
   excess CO2 over the Anthropocene.
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Inferred sink to terrestrial biosphere plus deep ocean over 
Anthropocene agrees with turnover time based on inventoried 

    emissions minus measured increase in atmospheric stock. 
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SINK RATE INTO TERRESTRIAL
BIOSPHERE PLUS DEEP OCEAN
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Consistent with constant transfer coefficients over 
   the Anthropocene.

The lifetime of atmospheric CO2 in excess of preindustrial 
is found to be 50–65 years based both on observations 
and on a simple model. 

This lifetime is several-fold to as much as an order of magnitude 
shorter than obtained with current carbon-cycle models.

CO2 is accurately represented over the Anthropocene by a 
4-compartment model with three independent, observationally 
constrained parameters. 

Excess atmospheric CO2 could be stabilized over the next 
century by decreasing anthropogenic emissions by 50%.

CONCLUSIONS

EMISSIONS
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 Antarctica, Cape Grim
 Global CO2 in air

Nature’s “subsidy” of our carbon dioxide emissions

And Anthropogenic Atmospheric Stock

INPUT TO MODEL CALCULATIONS

RESULTS
MODEL RESULTS OVER THE ANTHROPOCENE

AND FOR EMISSIONS CESSATION OR REDUCTION

Decreasing anthropogenic emissions by 50% would essentially 
   stabilize excess CO2, with increase of only 10% over a century. 

Cessation experiments show lifetime of excess CO2 50 – 65 years.  
Model closely matches observations over Anthropocene. 
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