Δr=((1/2)⋅0,002 cm) 1/2 =0,001 cm.
Método B\(\)
\(V=\Pi\left(0,628\ cm\ \right)^2\cdot15,011\ cm=18,598\ cm^3\ \) 
\(ΔV=\sqrt{\left(\left(\frac{δf}{δr}\right)\ Δr\right)^2+\left(\left(\frac{δf}{δh}\right)\ Δh\right)^2}\) 
\(ΔV=\sqrt{\left(\Pi.2rh.Δr\right)^2+\left(\Pi.r^2.Δh\right)^2}\)
\(\)\(ΔV=\sqrt{\left(\Pi.2\left(0,628cm.15,011cm\right).0,001cm\right)^2+\left(\Pi.0,628cm^2.0,002cm\right)^2}\)
\(ΔV=0,059\ cm\ ^3\)
Método C
 \(V=\frac{53,18.g.cm^3}{2,7.g}=19,696\ cm^3\)
\(V=\frac{53,18.g.cm^3}{2,7.g}=19,696\ cm^3\)
 \(ΔV=\left|\frac{δV}{δm}.Δm\right|\)
 \(ΔV=\left|\frac{1}{ρ}.Δm\right|\)
 \(ΔV=\left|\frac{1cm^3}{2,7g}.0,01g\right|=0,004\ cm^3\)
 
 \(V_{inicial}=\left(79\ cm^3\pm1\ cm^3\right)\)