\(\gamma=\ \frac{W}{L}=0.5\frac{Lb}{Ft}\)
\(W=\left(0.5\frac{Lb}{ft}\right)\pi\ ft\)
\(x=\ \frac{\int_1^1r\ \cos\ \theta\ r\ d\theta}{\int_{1L}^1rd\theta}\)
\(-wxc\ +\ \left(4\ ft\right)\ Bx=0\)
\(-\left(\frac{2r}{\pi}\right)\left(\pi\ Lb\right)+4Bx=0\)
\(\left(4\ ft\right)Bx=\left(\frac{2r}{\pi}\right)\left(\pi\ Ln\right)\)
\(Bx=1\ Lb\)
\(Bx=Ax=1\ Lb\ \) ( Resultado de la reacción horizontal en el punto B de la figura \ref{333629})
\(\)\(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\frac{2\pi}{2}=\pi\)
\(Ay=\ \pi\ Lb\)