Assignment 2

Samantha Vu SID 861291195

Ashu Singh SID 861167389

CS 111 ASSIGNMENT 2

due Friday, February 9

Problem 1: Prove the following statement: Let x, y be two non-negative integers. Then $9 \mid\left(x^{2}+y^{2}\right)$ if and only if $3 \mid x$ and $3 \mid y$. (Note: notation $a \mid b$ means that a is a divisor of b.)
Hint: What are all possible remainders of x^{2} modulo 9 ?

Solution 1:

Prove that if $3 \mid x$ and $3 \mid y$, then $9 \mid\left(x^{2}+y^{2}\right)$.
We prove its contrapositive: If $\operatorname{xrem} 3 \neq 0$ or yrem $3 \neq 0$ then $\left(x^{2}+y^{2}\right)$ rem $9 \neq 0$.
For any $x 1, y 1$ such that $x 1 \equiv x(\bmod 3)$ and $y 1 \equiv y(\bmod 3)$ we have $\left(x^{2}+y^{2}\right) r e m 9=\left(x 1^{2}+y 1^{2}\right) r e m 9$.
If $x, y \in 0,1, \ldots, 8$ and both x, y are not multiples of 3 , then $\left(x^{2}+y^{2}\right)$ rem $9 \neq 0$:
$x, y: 0,1,2,3,4,5,6,7,8$
x^{2} rem $9, y^{2}$ rem $9: 0,1,4,0,7,7,0,4,1$
Then, we prove that if $9 \mid\left(x^{2}+y^{2}\right)$, then $3 \mid x$ and $3 \mid y$.
We prove its contrapositive: If $\left(x^{2}+y^{2}\right)$ rem $9 \neq 0$, then xrem $3 \neq 0$ and yrem $3 \neq 0$.
For any $x 1, y 1$ such that $\left(x^{2}+y^{2}\right) r e m 9=\left(x 1^{2}+y 1^{2}\right) r e m 9$, we have $x 1 \equiv x(\bmod 3)$ and $y 1 \equiv y(\bmod 3)$.
If $\left(x^{2}+y^{2}\right)$ rem $9 \neq 0$, then both x, y are not a multiple of 3 :
x^{2} rem $9, y^{2}$ rem $9: 0,1,4,0,7,7,0,4,1$
$x, y: 0,1,2,3,4,5,6,7,8$
Then, $9 \mid\left(x^{2}+y^{2}\right)$ if and only if $3 \mid x$ and $3 \mid y$.

Problem 2:

Alice's RSA public key is $P=(e, n)=(31,95)$. Bob sends Alice the message by encoding it as follows. First he assigns numbers to characters: blank is 2 , comma is 3 , period is 4 , colon is 5 , semicolon is 6 , dash is 7 , then A is $8, B$ is $9, \ldots, Y$ is 32 , and Z is 33 . Then he uses RSA to encode each number separately.

Bob's encoded message is: Decode Bob's message. Notice that you don't have Alice's secret key, so you need to "break" RSA to decrypt Bob's message.

For the solution, you need to provide the following:

- Describe step by step how you arrived at the solution:
- Show how you determined $p, q, \phi(n)$, and d;
- Show the calculation that determines the first letter in the message.
- Give Bob's message in plaintext. The message is a quote. Who said it?
- If you wrote a program, attach your code to the hard copy. If you solved it by hand (not recommended), attach your scratch paper with calculations for at least 5 first letters.

88	11	82	70	27	8
81	33	41	3	81	26
3	30	10	27	8	3
80	88	20	27	81	41
26	3	27	72	8	88
80	3	33	41	88	3
10	27	26	3	72	33
80	59	33	8	8	88
41	3	30	10	27	8
3	33	41	88	3	10
27	26	3	19	88	27
80	41	88	11	3	81
41	3	26	70	10	33
33	19	9			

Solution 2:

Alice's secret key: $n=95=p q$
$p=19, q=5$
$\phi(n)=(p-1)(q-1)=18 * 4=72$
$d=e^{-1} \bmod \phi(n)=31^{-1} \bmod 72$
$31 \alpha+72 \beta=1$
Multiples of $31 \alpha=31,62,93,124,155,186,217$
Multiples of $72 \beta+1=73,145,217$
$\alpha=31^{-1} \bmod 72=d=7$
First letter: $88^{7} \bmod 95$
$=88 * 88^{6}=88 *\left(88^{2}\right)^{3}=88 * 7744^{3}=88 * 49^{3}$
$=88 * 49 * 49^{2}=4312 * 49^{2}=37 * 49^{2}=37 * 2401$
$=37 * 26=962=12$
$\rightarrow{ }^{\prime} \mathrm{E}$ '
Bob's message: EDUCATION IS WHAT REMAINS AFTER ONE HAS FORGOTTEN WHAT ONE HAS LEARNED IN SCHOOL.

This is a quote from Albert Einstein.

Algorithm:

```
#include <iostream>
#include <string>
#include <math.h>
using namespace std;
int mod(string , int );
char convert(int );
```

```
int main() {
    //Declare and fill array with Bob's encrypted message
    const int SIZE = 81;
    int encrypted_message [SIZE] = { 88, 11, 82, 70, 27, 8,
                                    81, 33, 41, 3, 81, 26,
                                    3, 30, 10, 27, 8, 3,
                                    80, 88, 20, 27, 81, 41,
                                    26, 3, 27, 72, 8, 88,
                                    80, 3, 33, 41, 88, 3,
                                    10, 27, 26, 3, 72, 33,
                                    80, 59, 33, 8, 8, 88,
                                    41, 3, 30, 10, 27, 8,
                                    3, 33, 41, 88, 3, 10,
                    27, 26, 3, 19, 88, 27,
                    80, 41, 88, 11, 3, 81,
                    41, 3, 26, 70, 10, 33,
                            33, 19, 9 };
    cout << "Bob's decrypted message: ";
    for(int i = 0; i < SIZE; i++) {
        cout << convert(mod(to_string(pow(encrypted_message[i], 7)), 95));
    }
    cout << endl;
    return 0;
}
int mod(string num, int a) {
    int res = 0;
    for (int i = 0; i < num.find('.'); i++) {
        res = (res * 10 + (int)num[i] - '0') % a;
    }
    return res;
}
char convert(int number) {
    if(number == 2) { return number + 30; } //' ,
    else if(number == 3) { return number + 41; } //','
    else if(number == 4) { return number + 42; } //'.'
    else if (number == 5) { return number + 53; } //';'
    else if (number == 6) { return number + 38; } //'_',
    else { return number + 57; } //'A'-'Z'
}
```

Problem 3: (a) Compute $15^{-1}(\bmod 17)$ by enumerating multiples of the number and the modulus. Show your work.
(b) Compute $15^{-1}(\bmod 17)$ using Fermat's theorem. Show your work.
(c) Find a number $x \in 1,2, \ldots, 36$ such that $7 x \equiv 11(\bmod 37)$. Show your work. (You need to follow the method covered in class; brute-force checking all values of x will not be accepted.)

Solution 3:

(a) $15^{-1}(\bmod 17)$
$15 \alpha+17 \beta=1$
Multiples of $15 \alpha=15,30,45,60,75,90,105,120$
Multiples of $17 \beta+1=18,35,52,69,86,103,120$
$\alpha=15^{-1} \bmod 17=8$
(b) $15^{-1}(\bmod 17)$
$15^{-1}=15^{15}$
$=15 * 15^{14}=15 *\left(15^{2}\right)^{7}=15 * 225^{7}=15 * 4^{7}$
$=15 * 4 * 4^{6}=60 * 4^{6}=9 * 4^{6}=9 *\left(4^{2}\right)^{3}$
$=9 * 16^{3}=9 * 16 * 16^{2}=144 * 16^{2}=8 * 16^{2}$
$=8 * 256=8 * 1=8$
(c) $7 x \equiv 11(\bmod 37)$
$7^{-1} \bmod 37$
$7 \alpha+37 \beta=1$
Multiples of $7 \alpha=, 14,21,28,35,42,49,56,63,70,77,84,91,98,105,112$
Multiples of $37 \beta+1=38,75,112$
$\alpha=7^{-1} \bmod 37=16$
So, $7^{-1}(7 x)=11\left(7^{-1}\right) \bmod 37$
$x=11 * 16($ rem 37$)=176 \bmod 37=28$

