Introduction to CalcHEP

Dhong Yeon Cheong¹, Sungmook Lee¹, and Tae Geun Kim¹

¹Yonsei University

January 22, 2018

Abstract

In this manual, we calculate $e^-e^+ \rightarrow \mu^-\mu^+$ process symbolically using CalcHep, and partially Mathematica.

CalcHep could be useful when you just want quick result but would not be appropriate for complicated processes, such as loop level processes.

Initializing CalcHep

1) Go to your CalcHEP folder (the directory of this folder may vary among computers).

bin calchep_batch CITE fileMap.txt FlagsForSh help INSTALLATION License.txt mkWORKdir pdTables utile calchep_calchep_ini c_source_FlagsForMake_getFlags__include_lib____Makefile___models___shin___work_____

Figure 1: This is a caption

2) Type

[] ./mkWORKdir test

Then you can find new 'test' directory generated.

pin calchep_batch CITE fileMap.txt FlagsForSh help INSTALLATION License.txt mkWORKdir pdTables test wo calchep calchep.ini c source FlagsForMake getFlags include lib Makefile models sbin utile

Figure 2: This is a caption

3) Go in to the 'test' directory, and type

[]./calchep

Then, a GUI screen will pop up in the following form.

🗯 XQuartz	Applications Edit Window	Help		(۲) ۱۱% 🤝 🖵 👙 🖕	💴 Mon 22 Jan 4:31 PM	ର 🔕 ≔
• • •			CalcHEP_3.6.30/symb			
LockP3.830ymb Abstract CalcHEP package is created for calculation of decay and high energy collision processes of elementary particles in the lowest order (tree) approximation. The main idea put into the CalcHEP was to make available passing from the lagrangian to the final distributions effectively with the high level of automatization. Use F2 key to get information about interface facilities and F1 - as online help. One for the final stributions contended.net/calchep Bugs https://bugs.launchpad.net/calchep			Model(CKM=1) with hGG/AA)			
7 😐 🔊	F1-Help F	2-Man F5-Switch 1 🔀 🕺 🤜 🛞	es F6-Results F		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Figure 3: This is a caption

$e^-e^+ \to \mu^-\mu^+$ Calculation using CalcHep

4) Enter 'Standard Model' -> 'Enter Process'

(You may use or modify other options, but CalcHep is usually not appropriate to calculate such a complicated processes)

🗴 XQuartz Applications Edit Window Help		👉 돶 🔽 🎅 96% 🖓 🔳 🛛 Mon 22 Jan 4:41 PM	ୟ 🔕 🗉
	2 Search or enter website name	0	
Model: Standard Mo	CalcHEP_3.6.30/symb		
List of parti	cles (antiparticles)		_
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Enter process: $e_i E \rightarrow m_i M$			
bntel plotess. e <mark>.b > m.</mark> w			
			/

Figure 4: This is a caption

5) Type the process in which you want to calculate in the black line. (Capital letters mean anti-particle). You do not need to type anything in 'Exclude diagrams with' line.

6) Enter 'View Diagram'

Now, we only want to calculate QED processes, so we will exclude the second diagram, which is a Z-boson mediated process.

Figure 5: This is a caption

D: Exclude all diagrams, O: Exclude a selected diagram. (for others, use F1)

7) Back to previous menu, (click ESC) and enter 'Square diagrams'->'Symbolic Calculations'->'MATHEMATICA code'

When you enter 'MATHEMATICA code', it seems nothing happens, but don't worry. It really generated m-file script in your folder.

8) Escape from CalcHep GUI.

Symbolic Calculation through Mathematica

9) Go to 'results' directory in your 'test' directory. You can find 'symb1.m' file generated.

[] cd results

10) Open 'symb1.m'

[] vi symb1.m

Now, you can change and copy this m-files script.

🗉 XQuartz Applications Edit Window Help	👉 👯 🖵 🛜 100% 🗐 🔳 Mon 22 Jan 4:57 PM 🔍 🛞 😑
Model: Standard Model	
Process: e,E -> m,M	
Feynman diagrams diagrams in 1 subprocesses are constructed diagrams are deleted.	C code C-compiler Edit Linker REDUCE code
Squared diagrams diagrams in 1 subprocesses are constructed diagrams are deleted. diagrams are calculated.	MATHEMATICA code FORM code Enter new process
F1-Help F2-Man F3-Model F4-Diagrams F5-Switches F	'6-Results F9-Ref F10-Quit

Figure 6: This is a caption

batch_results bin	calchep calchep batch	-	

Figure 7: This is a caption

aux	symb1.m

Figure 8: This is a caption

- 11) Copy the script and paste to the Mathematica terminal.
- 11) Close the m-files. (Esc->q->Enter or Esc + : ->q -> Enter)
- 12) Go to 'utile' in 'calchep $_3.6.30$ '

Figure 9: This is a caption

- 13) Open 'sum_int.m'.
- [] vi $\operatorname{sum}_i nt.m$
- 14) Copy the script and paste to the Mathematica terminal. (above the previous symb1.m script!!!)
- 15) Run the scripts.

16) The final result is :

[] res = totFactor*numerator/denominator res/.{Mm-;0}//Simplify

Figure 10: This is a caption