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2a)

From the given relation we can infer,

g (n) ≤ c1h (n) ∀ n ≥ n0
⇒ h (n) ≥ 1

c1
g (n)

Also, f (n) ≥ c2h (n) ∀ n ≥ n0
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therefore from the above relations we can say that,

f (n) ≥ c2
c1
g (n)⇒ f (n) ≥ c3g (n) ∀ n ≥ n0

hence, f (n) = Ω (g (n)) is TRUE

2b)

f (n) = O (g (n))

3f(n) = O
(
3g(n)

)
if this hold true then,

⇒ 3f(n) ≤ 3C1g(n)

Taking Log on both sides we get,

⇒ f (n) . log 3 ≤ C1g (n) . log 3 ,

Dividing by log 3 we get,

⇒ f (n) ≤ C1g (n) ⇒ f (n) = O (g (n))

So we can say this relationship is TRUE

3. a)

The problem here is of searching but not the exact match rather finding the number of elements lesser than
the given B.M.I, additionally the exact match could be present, so we will have to check for that as well.

In the problem statement its mentioned that at the end of every year the list is prepared for the next year.
Assuming the list is sorted according to the B.M.I, we can therefor apply the algorithm of Binary-Search as
my friend Polly suggested.

The catch here is that we never return “-1” when the given B.M.I we are searching for is not found, instead
we return the lower bound of the deduced sub-array we are searching in at that point. This could very well
be the case when the given B.M.I is not present in the sub-array or list.

3. b)

Assumptions:

1. The given sub-array & the parent array are in the non-increasing order of the B.M.I and the B.M.I in
the list are of the same age as of the patient.

2. Let the list of patients who visited in the last year be β, where β.length > 0
3. Let the given sub-array be α, where α.length > 0 : α [i] ∈ β for i = 0, 1, 2, 3....n where n < β.length
4. Let the given B.M.I be κ

input : A sequence of n numbers 〈a1, a2, a3... an〉

output : A number n1 : 0 ≤ n1 ≤ 1

compute-Percentile(κ, α, β.length){

l← 0

r ← α.length − 1

λ ← search-BMI(α, l, r, κ)

return λ
β.length
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search-BMI(α, l, r, κ){

if l ≤ r

m ← (l +r)
2

if α [m] == κ

return m

else if α [m] < κ

return search-BMI(α, m+ 1, r, κ)

else

return search-BMI(α, l, m− 1, κ)

return l

3. c) We prove the correctness of our algorithm by induction on the size of sub-array n = r − l + 1

Base case: n = 1 ⇒ l = r, m = (l+r)
2

= l = r

if α [m] == κ, then it will return m = l = r

if α [m] 6= κ,

• α [m] < κ, it will call search-BMI(α, m+ 1, r, κ)

this call will return l ⇒ 1

• α [m] > κ, it will call search-BMI(α, l, m− 1, κ)

this call will return l ⇒ 0

Assumption: search-BMI works correctly for any sub-array of size K = r − l + 1

Inductive Step:

Let α be of size K + 1

m = (l+r)
2

there are 3 cases:

1. α [m] == κ, it returns m
2. α [m] < κ, it will call search-BMI(α, m+ 1, r, κ)

size of sub-array now is r − (m+ 1) + 1 = r −m
a) if l + r is even

r − (l+r)
2 = (2r−l−r)

2 = (r−l)
2 < K

by our assumption, this returns the correct answer as our algorithm works for
size K

b) if l + r is odd, m = (l+r−1)
2

size of sub-array is r − (l+r−1)
2 = (2r−l−r+1)

2 = (r−l+1)
2 < K

by our assumption, this returns the correct answer as our algorithm works for
size K

3. α [m] > κ, it will call search-BMI(α, l, m− 1, κ )
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the size of the sub-array now is m− 1− l + 1 = m− l

a) if l + r is even

(l+r)
2 − l = (r−l)

2 < K

by our assumption this returns the correct answer.

b) if l + r is odd, m = (l+r−1)
2

⇒ (l+r−1)
2 − l = (l+r−1−2l)

2 = (r−l−1)
2 = (K+1−1)

2 = K
2 < K

by our assumption this returns the correct answer .
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