
Notes on GP CaKe: Effective Brain Connectivity with Causal

Kernels

hannahpinson1

1Affiliation not available

January 12, 2018

Model Equations

The dynamics of each neuronal population xj(t) is modeled with an integro-differential equation:

Djxj(t) =

N∑
i=1

(ci→j ? xi)(t) + nj(t) (1)

where ci→j is the kernel between source i and target j and nj is Gaussian white noise with mean 0 and
variance σ2

n, and where Dj is a differential operator, given by:

Dj = α0 +

P∑
p=1

αp
dp

dtp
(2)

The construct the model, we thus need to estimate both the parameters of the differential operator as the
shape of the kernels ci→j .

Estimating the Differential Operator

Given the largest power p, the parameters of the differential operator can be estimated by maximizing the
univariate marginal likelihood of each individual source. The quality of this estimate is of course dependent
on the strength of the coupling effects it neglects.

Example for D = d
dt + α (which is already implemented by the authors):

Equation for each source, but without connections, then becomes:

(
d

dt
+ α)xj(t) = nj(t) (3)

with solution (a Gaussian Process)

yj(t) = xj(t) = c exp(−αt) + nj(t) (4)

1

where c is called the amplitude and α is called the relaxation constant. If we define f

f(t) = c exp(−αt) (5)

then the (stationary) covariance function of f, σf , is given by:

σ2
f (t1, t2) = c2 exp(−α | t1 − t2 |) (6)

Now we ought to estimate the univariate marginal likelihood as:

log p(y | X) = −1

2
yt(σ2

f + σ2
nI)y − 1

2
log | σ2

f + σ2
nI | −

N

2
log 2π (7)

with N the number of timesteps, y being the timeseries data, and X being the ’features’ vector, here a
vector of timesteps. (Note that σ2

f is implemented as a matrix and σ2
n as a constant.) A full discussion and

derivations can be found in (Rasmussen, 2004).

In real applications we don’t immediately know σ2
n, and at this point in the code, the authors seem to just

neglect it in their estimate. The maximal likelihood is determined from varying the parameters c and α over
a grid (we could definitely optimize this approach). The value of c is for driving noise with σ2

n = 1 and no
other input, equal to the timestep ∆t of the discretization scheme used to generate the data.

Estimating the Causal Kernels

Fourier transforming Eq. into the frequency domain, we obtain:

Pj(ω)xj(ω) =

N∑
i=1

xi(ω)ci→j(ω) + nj(ω), (8)

or

xj(ω) =

N∑
i=1

xi(ω)

Pj(ω)
ci→j(ω) +

nj(ω)

Pj(ω)
. (9)

This equation has again the form of a Gaussian Process, this time in the frequency domain. We can thus
estimate the mean function, or the ’posterior expected value’, of each kernel ci→j(ω):

c̄i→j = Ki→j
xj
Pj

(∑
l

xl
Pj
Kl→j

xl
Pj

+
σ2
n

| Pj |2
)−1

xj (10)

with Ki→j the covariance matrix of the kernel from i to j ci→j (aka ”the kernel of the kernel”). These
covariance functions K are restricted in shape, such that they correspond to causal, smooth and temporal
localized kernels (ci→j) in the time domain. In order to achieve this, they have the proposed shape of:

K(ω1, ω2) = exp(−ν ω2
1+ω2

2
2)

(
Ktemporal + iH(Ktemporal)

)
(11)

2

with H the Hilbert transform, and

Ktemporal(ω1, ω2) = exp

(
−θ (ω1−ω2)2

2 +its(ω1−ω2)
)
. (12)

See the original paper for elaboration. To estimate the kernel c̄i→j , we thus need to estimate 4 parameters:
the smoothing factor ν (or the ’timescale’), the delay ts, the temporal localization factor θ and finally the
noise level σn. Once these are given, we can use them in the closed form expression 10.

In the code found on Github, the author implemented a procedure to estimate the timescale ν and the noise
level σn :

1. use equation 9 to estimate the kernels ci→j with a least squares regression

2. compute the covariance functions of these kernels

3. fit gaussians with timescale parameters to these covariance functions, choose the timescale of the best
fit as the best parameter

4. use the residual variance as an estimate of the noise level

5. use k-mean clustering to find the centroid value of these parameters over all samples for each connection

An estimation of θ and ts doesn’t seem to be implemented.

3

References

Carl Edward Rasmussen. Gaussian Processes in Machine Learning. In Advanced Lectures on Machine
Learning. Springer Berlin Heidelberg, 2004. doi: 10.1007/978-3-540-28650-9 4. URL https://doi.org/

10.1007%2F978-3-540-28650-9_4.

4

https://doi.org/10.1007%2F978-3-540-28650-9_4
https://doi.org/10.1007%2F978-3-540-28650-9_4

