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Age regression from brain MRI
Ioannis Valasakis

I. ABSTRACT

The objective for this coursework is to explore two different
supervised learning approaches for age regression from brain
MRI data. Data from 652 subjects were provided and their
respective skull masks for efficient skull-stripping. A three-
class brain segmentation using Gaussian Mixture Model was
performed and evaluated. The three relative brain tissue vol-
umes were calculated and three different regression approaches
were used: Ridge Regression, Bayesian Ridge and Logistic
Regression, using a two-cross validation approach to compare
their results.

II. METHODS

A. Volume-based regression using brain structure segmenta-
tion

A typical pipeline for brain regression across individuals
includes: a) Co-registration (this step wasn’t performed here)
b) Resampling c) Skull-stripping, where the skull bone is
removed from the brain image (in this case using a provided
brain mask) d) Bias field correction (usually with the N4
method) e) Intensity normalisation f) Noise reduction.

The segmentation was defined as a ratio between each tissue
volume and the total brain volume ratio for each subject, to
include the variability factor. This forms the basis for quantifi-
cation of tissue volume, further visualisation and analysis of
anatomical features of the subject [1].

The Gaussian Mixture Model (GMM) was used for a known
set of tissue classes, the three following: White Matter (WM),
Gray Matter (GM) and Cerebrospinal Fluid (CSF). For each
pixel in the image, features such as pixel intensity form pat-
terns are classified based on the probability of them belonging
to a pixel. The algorithm was set to get the mean GMM result
for a reference segmentation and apply this furthermore to
the rest of the segmentations, to ensure consinstency between
labels.

Intensity normalisation was performed (z-score), where the
mean image intensity from all pixels in an image was sub-
tracted and divided by the standard deviation of intensities.
Another very popular method is the one from [2], where the
image intensities are piecewise linearly mapped onto a refer-
ence scale. Resampling was also performed with an isotropic
8mm resolution as target.

The data are modelled using a mixture of several com-
ponents, where each of them possesses a simple parametric
form. Each pixel’s feature variation for each class need to be
calculated, by assigning a probability density function (PDF),
which is a convex combination, to the destination class.

To estimate the PDF parameters a parametric or a non-
parametric approach can be followed: GMM, falls on the
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first case, as it is using Gaussian distributions [3]. For
the optimisation process the Expectation-Maximization (EM)
algorithm is used.

The GMM for x ∈ Rd is defined by its Kcomponents
(Gaussian density with parameters µ

k
and Σk). Each compo-

nent is a multivariate Gaussian density with parameters θk =
{µk, Σk}:

pk(X|θk) =
1

(2π)d/2|
∑
k |1/2

e−1/2(x−µk)
t ∑−1

k (x−µk)

The EM algorithm [4] is an iterative algorithm which takes
a random initial estimate γ and iteratively updates it until
it convergences. The iteration includes a E-step and M-step,
described as follows:

E-step: For the random initial parameter γ, a membership
weight wikis computed for each data point xi, 1 ≤ i ≤ N
and all mixture components 1 ≤ k ≤ K, such that it creates a
matrix with dimensions N ·K with membership weights and
where the sum of each row is equal to one, i.e. the membership
weights are defined such as

∑K

k=1
wik = 1

M-step: New parameter values are estimated using the
membership weights and the data. With Lk =

∑L
i=1 wik the

effective number of assigned data points to the component k.
The new mixture weights are:

anew
k =

Lk
L
, 1 ≤ k ≤ K

and

µnew
k =

(
1

Lk

) L∑
i=1

wik · xi, 1 ≤ k ≤ K

This vector equation uses d−dimensional vectors to com-
pute the updated mean with the fractional weight wik and
similarly to an empirical covariance matrix (with an extra
weight included):

new∑
k

=

(
1

Lk

) L∑
i=1

wik · (xi − µnew
k )(xi − µnew

k )t, 1 ≤ k ≤ K

It is important that the order of the equations in M-step
is followed as specified. After those calculations, the new
membership weights should be re-calculated in the E-step and
sequentially the re-calculation of the E-step parameters, and
so on. Each E,M pair defines an iteration.

A Ridge Regression (RR) and Bayesian Ridge (BR) have
been used for the age features regression including the ex-
tracted features from the previous step.

The regression predictor variables [5] are highly correlated
and the RR was used to introduce a small bias factor (ridge
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penalty) to those variables, which is a form of regularisation
and an extended linear regression. Using β-coefficients that
have much lower values it attempts to minimise their mean
square error and therefore the impact on the trained model.
Given a response variable yi which is continuous and a set of
predictors zij , by minimising [6]:

n∑
i=1

yi −∑
j

βjZij

2

+ λ
∑
j

β2
j

the parameters βjs are estimated, with λ controlling the
model’s complexity. With λ = 0, ridge regression becomes a
linear regression.

Bayesian Ridge is an extension of the RR [7] by complying
to two conditions:

1) the error ε has a normal distribution with mean 0 and
known variance matrix σ2I

2) the least square matrix has a prior normal distribution
with known mean and variance matrix, with posterior
probability able to obtain using Bayes Theorem

Linear Regression was also used as a matter of comparison
between different models. Support Vector Machines (SVM
and SVR for Support Vector Regression) with Radial Basis
Function (RBF) kernel and Decision Tree regression was also
implemented on the data set.

SVM creates a hyperplane in multidimensional space to
separate various classes. The hyperplane is a decision boundary
between classes and it is constructed iteratively to minimize
a defined error. The main aim of SVM is to search for a
maximum marginal hyperplane (MMH) that splits the dataset
into classes, with the furthest possible orientation from its
closest data points [8]. Radial Basis Function (RBF) kernel is
used in support vector machine classification and it can map an
input space in infinite dimensional space. For a given dataset:

(x1, y1), ..., (xn, yn), xi ∈ Rd, yi ∈ (−1,+1)

With each xi being a feature representation in a vector
format and yi the class label of the respective training com-
pound i, the optimal hyperplane is defined as:

wxT + b = 0

with w being the weight vector and b the bias. The aim
is to train the SVM model to find those parameters such as
the hyperplane separates the data and maximises 1÷||w||2. A
kernel function can be added to add additional dimensions to
the raw data therefore creating a linear problem in the resulting
higher dimensional space.

Regression Decision Trees (RDT) attempt to segment the
predictor space into regions. A set of splitting rules is defined
and the prediction for a given observation is performed by
using the mean of the data in the specific region. Those rules
can be described by a tree analogy:

For a prediction of a response for class Y from in-
puts X1, X2....Xp a binary tree can be created. For each
internal node, a test is performed in an input, such as Xi. A

decision to follow a sub-branch of that tree is made, depending
on the previous test and when a leaf node is reached, a
prediction is made. This prediction is an average of all the
training data points which reach this specific leaf.

The decision tree algorithm is non-parametric and can deal
with efficiency for large, complicated datasets without creating
a difficult to handle parametric structure [9]. A simple decision
tree is shown in the Fig. 1.

Figure 1. A simple decision tree with two parameter (binary) target variable
Y

B. Image-based regression using grey matter maps
The gray matter maps were extracted from the given MRI

scan data and using a common reference space they aligned
to obtain spatially normalised maps. A state-of-the-art neu-
roimaging toolkit was used, named SPM12. The reference
space corresponds to the MNI atlas.

That allow to have locations of voxels across subjects which
correspond to the same anatomical locations and that allows
each voxel location to be treated as a subjective individual
feature. That means that those maps are very large and a
dimensionality reduction method using PCA can be performed
prior to training and regression. A regressor using a lower
dimensionality can be tested first before the final regression
and feature representation which will be obtained with PCA.
Gaussian

Because the grey matter maps are spatially normalised,
voxel locations across images from different subjects roughly
correspond to the same anatomical locations. This means that
each voxel location in the grey matter maps can be treated
as an individual feature. Because those maps are quite large,
there would be a very large number of features to deal with.
A dimensionality reduction using PCA needs to be performed
before training a suitable regressor on the low-dimensional
feature representation obtained with PCA. It might also be
beneficial to apply some preprocessing before running PCA,
which should be explored. The implemented pipeline should
be evaluated using cross-validation using the same data splits
as in part A, so the two approaches can be directly compared.

Downsampling was used before the PCA reduction using
local averaging. A Gaussian filter was also applied using an
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experimentally found suitable σ = 0.65 such as to apply
smoothing, reduce noise and to compensate for errors of the
spatial normalisation that had been applied to the maps.

The dimensionality was reduced on the grey matter
maps using the PCA method (already implement inside the
SciKit Python module). By setting different parameter values
for ncomponents ∈ (0, 1)the new dimensionality of data was
determined. Furthermore, the PCA was applied to both the
training and testing data by fitting the PCA model to Xtrain

and applying a dimensionality reduction (by using the trans-
form function) to Xtrain, Xtest.

After the PCA, as in the previous part the age regression was
performed with three different methods: Linear Regression,
SVR with RBF kernel and DT with Adaboost.

III. RESULTS

An overview of the patient given dataset is in the Fig. 2,
Fig. 6 and Fig. 8, where the gender, age distribution and the
age variability are shown.

Figure 2. The gender distribution for the given subject dataset is very
balanced, with a slight favour (1%) for female subjects.

The variability of the intensity of the scans was corrected
using an intensity normalisation method. This standardisation
of all the datasets performed satisfactory for this pipeline. The
three brain areas were scanned using a label search and re-
ordering was performed (if needed) as well for WM, GM and
CSF labels.

Figure 3. The skull-stripped brain, using the provided masks, for a test
subject.

The images were sequentially segmented with a reference
segmentation shown in Fig. 5. GMM was performed and for
a chosen subject with the skull-stripped brain image shown in

Figure 4. The GMM for one of the test subjects, with the overlapped
components on the intensity histogram.

Fig. 3 the result of the components on the intensity histogram
is shown in Fig. 4.

The features that were used in the regression were combina-
tions the total volume GM, WM, CSF as well as a few different
combinations (GM,CSF and WM,GM). From the resulting
scoring, the most significant and accurate came from the total
volume characteristic, therefore this is what is shown in the
following figures. The included code has more examples and
the ability to run further volume combinations.

Figure 5. The segmentation result using GMM for the reference test subject.

Figure 6. The age distribution on the given dataset with a distribution traced
over.

For the regression, the cross-validated results are shown in
the regression table in Fig. 7. The best results were achieved
with SVM using RBF kernel, achieving an r2-score of 0.64, as
well as the regression using DT. There were also trials using
a combination of WM, GM or just one of WM, CSF, GM
but those didn’t achieve better results, achieving a maximum
r2-score of 0.56 in the best case.

In the second part, the GM maps were smoothed using a
Gaussian filter as described further in the methods. The result
can be seen in the Fig. 9 and Fig. 10.

The regressions are shown in the following figures (Fig. 13,
Fig. 12, Fig. 11, Fig. 14) for the image-based approach. Specif-
ically for the last approach, the Adaptive Boosting was used
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Figure 7. The cross validated results for the image-based approach (using a
50% 2-fold training split, utilising scipy’s K-Fold algorithm)

Figure 8. The age variability between the subject datasets which clearly
follows a linear distributed path.

Figure 9. The GM images obtained from the subjects, after creating maps
and being aligned to a common reference space

Figure 10. The downsampled and smoothed GM images using sigma=0.65

on top of Decision Trees regression, where the performance
of r2-score was improved by more than 15%.

For the volumetric approach, the linear regression is shown
in Fig. 15 and the table with the improved scores over Fig. 16.

IV. 4 CONCLUSION

The best model prediction achieved an r2-score of 0.64 in
the 2-fold split using SVR with RBF kernel. The advantage
of SVM is that it is faster that the Bayesian regression,
while offering good accuracy. It works with a clear margin
of separation and with high dimensional space.

In a similar fashion, the Decision Tree regression is a very
intuitive process and (even though in this case not exactly

Figure 11. Linear Regression first pass

Figure 12. Linear regression, second pass with better prediction between the
ages of 20-30 although still not optimal.

Figure 13. SVR regression with RBF kernel

important) it doesn’t require as much effort in the data prepa-
ration and preprocessing phase, including any normalisation.
The complex relationships between the inputs and target can
be simplified by dividing those input variable to subgroups.
Decision trees are also robust to outliers and non-parametric.
That said, it can be affected by small changes that will impact
the structure of the decision tree and can be slower and having
a more expensive training, if it was to be used in a bigger
amount of data.

Nevertheless, Decision Tree using Adaboost can achieve a
20% up in performance and R2 score. The biggest improve-
ments though, were seen with R2 values reaching 83%, using
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Figure 14. Decision tree regression using Ada boost, with increased
performance over the plain DT regression.

Figure 15. Linear Regression using the GM maps was much more sucesfull
with a mean r2-score (%) of 88.21.

Figure 16. The scores using the GM approach were much more improved
in comparison. DT wasn’t as sucesfull but that is more of an irregularity as
it took very long time to run and didn’t complete on time.

the PCA method for the pre-registered Gray Matter maps.
Therefore, it can be concluded that this approach is much
more promising and can be further bettered if configured for
the specific dataset and by using and exploring more of the
extracted features.

Given more time, further data selection process for feature
representation (e.g. using Jacobians, Logarithm of Jacobians,
Background tissues, Jacobian scaled WM/GM/BG) would have
been made to explore if that would result in a more accurate
prediction. Methods such as Gradient boosted trees are also
very fitted for this kind of model prediction and they should
further be implemented using the current dataset and be
compared against the presented results.
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