
A chromosome browser; middle layer

implementation in Python.

Ioannis Valasakis
Birkbeck, University of London

May 7, 2018

1. Approach to the project

As was suggested we started looking individually at the data files, their docu-
mentation and the project requirements. Use the MAC OS X terminal, I used a
few command line tools like head, less, grep to have a quick look at the provided
human genome file.

zcat chrom12.gz | head -n 40 | less

This identified the file as a fasta with NCBI identifiers. Looking at the online
specification, I found out it described as following(FASTA format - Wikipedia,
n.d.):

Database Format

GenBank gb, accession, locus
EMBL Data Library emb, accession, locus
DDBJ, DNA Database of Japan dbj, accession, locus
NBRF PIR pir,,entry
Protein Research Foundation prf,, name
SWISS-PROT sp, accession, entry name
Brookhaven Protein Data Bank pdb, entry, chain
Patents pat, country, number
GenInfo Backbone Id bbs, number
General database identifier gnl, database, identifier
NCBI Reference Sequence ref, accession, locus
Local Sequence identifier lcl, identifier

This gave really valuable insight into what is described in the fasta database
format and how it will be later processed and analysed

1

Interaction with the team

We had a few team meetings that took place in Birkbeck Library and Computer
rooms but the rest of the communication was done through Code Reviews in
our GitHub repository, the Slack channel of our team (#group12) as well as
personal messages when we had specific issues. Overall, the interaction was
pretty effective although some minor issues (like software incompatibility, dif-
ferent versions of system tools) blocked some of our efforts.

Requirements for my contribution

The middle layer which includes the business logic was worked through a TDD
approach (described in more detail here ??). As the business logic part of the
Chromosome Browser, it was really important to have all the information from
the database to be able to communicate the results further to the front-end
layer. I used a top - bottom implementation in Python and I tested using a
custom json file, unless I could retrieve the real data from the database.

2. Performance of the development and process

Code testing

The development (as described above) was approached in a TDD aspect. Even
though the time didn’t allow for a full implementation and finalise of the test
module, this can be found in the folder middlelayer/tests. The tests described
there, were designed to fail in an initial approach and then each module was
programmed and tested individually with a few stub styled data (as the db layer
wasn’t ready, a json format of a protein implementation was created).

This proved to be extremely useful, as a few edge cases were discovered.
Specifically, that was in the implementation of the sequence alignment, where
the algorithm returns an undefined value when it wasn’t initialised as expected.

Overall, it was a pretty successful approach although sometimes it slowed
down the creative process and was more time consuming than a direct specifi-
cations implementation.

Known issues

As the integration of the team project didn’t work as well as expected (few
delays in the business logic code, troubles with the hope server and the database
initialisation there). As a result, we don’t have a final working version of the

2

https://github.com/wizofe/chrom12

browser but with a minor integration effort, this could result in a fully working
browser.

What worked and what didn’t

The individual elements of local creation and database retrieval, the API and
algorithms of the middle layer and the requests of the AJAX front-end imple-
mentation. A difficulty was that the different Python environments didn’t work
so well together, especially considering the $PYTHON environment variables as
we well as the Python virtual environments.

Problems and solutions

The problems described above should be further investigated to decide what
needs to be fixed. One important issue was that we were unable to get the
database working on the hope server, which resulted in a breaking point on our
development workflow. A second problem was that the front-end layer didn’t
implement all the described API functions, as well as a few issues on the middle
layer that affected the generation of code for the fron-end.

6. Alternative strategies

It would be really useful if we were able to invest on a more conceptual solution
using already developed libraries and single page REST API approach using one
of the modern Javascript frameworks.

7. Personal insights Code documentation

See the documentation of the API included with the source code in the folder
middlelayer/doc/docs.md{pdf}.

3

References

FASTA format - Wikipedia. (n.d.). https://en.wikipedia.org/wiki/FASTAformat.Retrievedfrom
(Accessed on Mon, May 07, 2018)

4

https://en.wikipedia.org/wiki/FASTA_format

	References

