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[bookmark: materials-and-methods]Materials and Methods
[bookmark: brain-network-construction]Brain network construction
Generally, network analyses consist of two important elements - nodes and edges . These two elements are the building blocks of networks and their accurate definitions are very important for any network model (Butts 2009) and also applicable to network neuroscience. The standard method of defining nodes in neuroimaging, particularly for fMRI studies, is by a structural atlas or parcellation of brain structure into different regions. The nodes are usually represented by collection of voxels within the defined structure and the edges are the statistical dependences of the brain activity of the pair of nodes. In this study, the brain is parcellated into 112 subcortical and cortical regions (see supplementary Table 1) defines by structural Harvard-Oxford atlas of the fMRIB (Smith et al. 2004; Woolrich et al. 2009). Each region is represented by average of voxel time series within the region.
The edge weights that link the brain nodes (regions) were calculated by the wavelet transform coherence (WTC) (Torrence and Compo 1998), smoothed over time and frequency to avoid bias toward unity coherence. We derived the spectral estimates of the time series using Morlet wavelets defined w(t,f) as 

Here, f is the centre frequency and  is the temporal standard deviation. The time-frequency estimate, X(t,f) of time series x(t) was computed by the convolution with wavelet coefficients, w(t,f);

We selected the central frequency of 1/12 Hz corresponding to spectral width of 0.05 to 0.11Hz for full width at half maximum(FWHM) . Therefore, the wavelet transform coherence between two regions x and y is defined as followed (Torrence and Compo 1998; Cazelles et al. 2007; Grinsted, Moore, and Jevrejeva 2004)

Where  is the cross-wavelet of  and , s is the scale which depend on the frequency (Cazelles et al. 2007; Grinsted, Moore, and Jevrejeva 2004) and S is the smoothing operator. This definition closely resembles that of a traditional coherence but the wavelet coherence is localized correlation coefficient in both time and frequency space. Higher scales are required for lower frequency signals (Cazelles et al. 2007; Grinsted, Moore, and Jevrejeva 2004) and in this study, we used scale of s=32 for the smoothing operation. This procedure was repeated for all pair of regions yielding adjacency matrix, A, with 112 by 112 dimensions which is the representative of functional connectvity between the brain regions.
[bookmark: network-modularity]Network modularity
Network modularity the network neuroscience concept of that the brain’s nodes cluster into modules or communities by using community detections algorithms (Girvan and Newman 2001). A community of nodes is group of nodes that are more connected not only by region but also by their functional similarity . The common method of community detection algorithms is the optimization of nodes partition into modules. In this study, we implemented a generalized Louvain detection algorithms (De Meo et al. 2011; Mucha et al. 2010) which considers multiple adjacency matrices as slices of network. The multislice system was implemented by all adjacency matrices of all scans and subjects during the period of value learning task. The quality function, Q, which used intra-community and inter-community connections to identify a partition of networks nodes (Mucha et al. 2010) is defined as 

Where  is the components of adjacency matrix of slice, s, and element  is the component of the null model matrix tuned by the structural resolution . In this study, the  standard parameter of 1 is selected. We employed the Newman-Girvan null model within each layer by using , where k is the total edge weight and  is the total edges weight in slice , s. The interslice coupling parameter,  is the connection strength between node j in slice s and node j in slice r and the total edge in the network is . The strength of the node,  is the sum of intraslice strength and interslice: , and  However, in our study we fixed this parameter to be . The last part of the equation 4 is the community assignments and  if  and  of nodes i and j are the same and 0 otherwise. We obtained partition of brain into network communities for each scan and subject with the standard parameter of . We obtained the module allegiance matrix (Bassett et al. 2011), whose elements correspond to the probability that two regions belong to the same community across all the scans and subjects. The seven network communities generated with this procedure are as shown in Table 1 ( in the main text).
[bookmark: inter-subject-correlation-isc-and-inter-subject-functional-connectivity-isfc]Inter-subject correlation (ISC) and inter-subject functional connectivity (ISFC)
We have shown in the main article how we obtained ISC and ISFC. ISC measured the reliability of stimulus driven responses across the subjects and allows the detection of all sensory cortical regions without assumptions or a priori knowledge of the temporal composition of exact cortical responses. However, we measures the reliability of ISC by computing the Pearson correlation between each subject three scans for each day to confirmed the ISC within subject. This was performed on bold time series signals on region-by-region. Each correlation value for each scan and subject was converted to Z score value to enable comparison with other scans and subjects.
Similarly, we estimated the consistency of the FC by computing the edge persistence (Nicosia et al. 2013) of the brain network across the three runs for each day to established the reliability of ISFC within subject . The edge persistence measures the topological overlap of the neighborhood from one scan to another by estimating the probability that nodes connected at a scan 1 will still be connected during scan 2 . For the three scans (s1,s2 and s3) in each day, the edge persistence is defined as:

Where  is the edge strength between of node i and j from the adjacency functional matrix, A and  is the edge persistence for node i.
[bookmark: edge-strength-and-resistivity]Edge strength and Resistivity
In order to determine the brain regions that mostly impact the brain network performance during the value learning task, we investigated the regions with high degree by computing the edge strength (or degree) and resistivity . A region with higher degree is said to be of very important for the system network performance. The edge strength is defined as

Where A is adjacency matrix with N total number of nodes in the network, and  is the strength or degree of node .
[bookmark: supplementary-results]Supplementary results
[bookmark: isc-and-isfc]ISC and ISFC
Some of the regions’ ISC across the subjects were consistent from day to day during the the value learning task with the fusiform, lingual gyrus, occipital lobe and precentral regions were correlated across the subjects (Fig. S1A). The correlation strength was lower in the day 4 but the lingual, fusiform gyrus and lateral occipital lobe were found to be significantly correlated across the subjects. The ISFC was lower (Fig. 2 in the main text and Fig. S1B) in the day 1 but increased in the second day with higher ISFC at the right precuneus and superior temporal pole, default mode network and visual networks. Other regions of higher ISFC include left middle temporal temporal gyrus, hippocampus, medial prefrontal cortex. In day 4, ISFC was mostly significant across the subjects in more regions that include superior and middle frontal gyri, superior parietal, angular gyrus, posterior cingulate gyrus, precuneus and cuneus, supercalcarine cortex, lateral occipital cortex, occipital fusiform gyrus, lingual gyrus, hippocampus and insular cortex.
We also computed the ISC for the rest condition for all the days (Fig. S2A and B). The average ISC was much lower during the rest condition compared to during the value learning task and statistically indistinguishable from zero. However, the ISC during rest condition was lower across all the days and ISCs for each networks or communities were similar across the days (Fig. S2B). Similarly, ISFC across the days were similar during rest condition (Fig. S2C) . Fig. S2D showed the ISFC for each brain network across the four days for resting condition.
While ISC and ISFC measure the inter-subject correlation and functional connectivity across the subjects, we established the reliability of these measures by computing the bold signal correlation and edge persistence of functional connectivity strength of each subject for three scans in each day. The bold signals of the subjects (Fig. S3A) were more correlated in the visual (VIS) system. There was higher bold signal correlation (Fig. S3B) at the lateral occipital region, lingual gyrus, and fusiform gyrus which form core part of occipital lobe, and these regions were consistent which what was observed for ISC (Fig. 2A and Fig. S1A). Other region with higher bold signal correlation are sensorimotor region and superior frontal gyrus. The average bold signal correlation (Fig. S3C) increased from day 2 to day 3 and 4 and show increase in the consistency across the scans in each day. However, edge persistence which measure the consistency of the functional connectivity strength of the three scans for each day was higher in the SM, DMN and VIS system as shown in Fig. S3D and S3E. These regions and systems are similar to what was observed in the ISFC (Fig. 2B and Fig. S1B) in day 4 which measures similarity of functional connectivity across the subjects.
[bookmark: functional-integration]Functional integration
As shown in Figure 3 in the main article, the community detection procedure yielded seven communities defined by the functional activity and structural location of the modules. The seven communities (see Table 1 in the main text) are fronto-temporal (FT), sensorimotor(SM) , default mode network (DMN), auditory (AUD), language (LAN), Visual (VIS) and the three regions putamen, caudate and thalamus (PCT). The functional connectivity pattern for each day (Fig. S4) during the task shows consistent functional connectivity pattern across the days. There were strong connections within each system most especially VIS, DMN and SM modules. The pattern of functional connectivity was consistent across the whole days and there were strong connection between the DMN, sensorimotor and visual networks which shows that these regions are more integrated than other networks during value learning task.
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Brain regions present in the Harvard-Oxford cortical and subcortical atlas as provided by FSL
	Frontal pole
	Cingulate gyrus, anterior
	

	Insular cortex
	Cingulate gyrus, posterior
	

	Superior frontal gyrus
	Precuneus cortex
	

	Middle frontal gyrus
	Cuneus cortex
	

	Inferior frontal gyrus, pars triangularis
	Orbital frontal cortex
	

	Inferior frontal gyrus, pars opercularis
	Parahippocampal gyrus, anterior
	

	Precentral gyrus
	Parahippocampal gyrus, posterior
	

	Temporal pole
	Lingual gyrus
	

	Superior temporal gyrus, anterior
	Temporal fusiform cortex, anterior
	

	Superior temporal gyrus, posterior
	Temporal fusiform cortex, posterior
	

	Middle temporal gyrus, anterior
	Temporal occipital fusiform cortex
	

	Middle temporal gyrus, posterior
	Occipital fusiform gyrus
	

	Middle temporal gyrus, temporooccipital
	Fronal operculum cortex
	

	Inferior temporal gyrus, anterior
	Central opercular cortex
	

	Inferior temporal gyrus, posterior
	Parietal operculum cortex
	

	Inferior temporal gyrus, temporooccipital
	Planum polare
	

	Postcentral gyrus
	Heschl’s gyrus
	

	Superior parietal lobule
	Planum temporale
	

	Supramarginal gyrus, anterior
	Supercalcarine cortex
	

	Supramarginal gyrus, posterior
	Occipital pole
	

	Angular gyrus
	Caudate
	

	Lateral occipital cortex, superior
	Putamen
	

	Lateral occipital cortex, inferior
	Globus pallidus
	

	Intracalcarine cortex
	Thalamus
	

	Frontal medial cortex
	Nucleus Accumbens
	

	Supplemental motor area
	Amygdala
	

	Subcallosal cortex
	Hippocampus
	

	Paracingulate gyrus
	Brainstem
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 ISC and ISFC maps during the task condition. (A) ISC was consistently significant () at the lingual gyrus and sensorimotor region across the days. Other regions include supramarginal in the first three days and lateral occipital lobe in the last three days. (B) ISFC () was lower in day 1 but increased steadily with higher ISFC strength in day 3 and day 4. Regions with higher ISFC include sensorimotor, visual (higher at lingual), supramarginal, anterior cingulate gyrus and frontal pole most especially in the third and fourth day.
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 ISC and ISFC during rest condition. (A) The ISC during the rest condition is similar across the days and no obvious difference across each (B) network community. (C) The ISFC was lower in the day 2 and the same patterns were observed for all (D) the communities or networks. Fronto-temporal (FT) and auditory (AUD) networks had lower ISFC compared to other networks. Nonsignificant relationship between ISC and ISFC might due to variability across the subjects during the rest condition
[image: figures/FigureS3/FigureS3.svg]
 Within subjects correlation during value learning task. (A,B) Bold signal correlation (Z score) within subjects the three scans per and average across fours days revealed higher consistency at the occipital lobe especially at the lateral occipital cortex. (C) The average bold signla correlation increased as the day increases. (D) Edge persistence (zscore) across the subjects shows that SM, DMN and VIS networks had higher consistency. (E) The topological distribution of edge persistence shows higher value at the lateral occipital, lingual gyrus, pre-central and frontal lobe (F) The Edge persistence is linearly correlated with the ISFC with gradual increase and average higher value across the region at day 3.
[image: figures/FigureS4/FigureS4.svg]
 Functional connectivity pattern during value learning. Across the days, FC shows stronger connectivity (p=0.05) and higher network degree within DMN, sensorimotor and visual networks for all the days and there is interconnectivity between these networks which shows that these networks are integrated during value learning
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