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Megan Head and colleagues [1] provide a large collection of p-values that, from their perspective, indicates widespread statistical significance seeking (i.e., p-hacking) throughout the sciences. The analyses that form the basis of their conclusions operate on the tenet that p-hacked papers show p-value distributions that are left skew underbelow .05 [12]. In this paper I evaluate their selection choices and analytic strategy and show that these affect the results substantially. 
I applaud their transparency in sharing both the data and analysis scripts, allowing for thorough assessment of the data analytic process and allowing alternative data analytic perspectives. In line with their original openness, I version controlled all my research efforts, allowing the assessment of my own data analytic process. Version control provides a timestamped history of the changes made to files, such as the analysis code or writing [2]. This is comparable to track changes, but applied to computer files. The version control of this paper is available at https://osf.io/sxafg/.
The p-value distribution of a set of heterogeneous results, as collected by Head et al., should be a mixture distribution of only the uniform p-value distribution under the null hypothesis H0 and right-skew p-value distributions under the alternative hypothesis H1. Questionable, p-hacking behaviors affect the p-value distribution. An example is optional stopping, which causes a peak of p-values just below .05 only if the null hypothesis is true [3].
Head et al. correctly argue that an aggregate p-value distribution could show a peak below .05 if optional stopping under the null, or other behaviors with similar effects, occurs frequently. Consequently, a peak below .05 (i.e., left-skew), is a sufficient condition for the presence of specific forms of p-hacking. However, this peak below .05 is not a necessary condition, because other types of p-hacking do not cause such a peak. For example, one might use optional stopping when there is a true effect [3] or conduct multiple analyses, but only report that which yielded the smallest p-value. Therefore, if no peak is found, this does not exclude that p-hacking occurs at a large scale. 
This paper is structured into fourthree parts: (i) evaluation of data selection choices made by Head and colleaguesexplaining the data analytic strategy of the reanalysis, (ii) reevaluating the resultsevidence for left-skew p-hacking based on my alternative selection choices but the same data analytic strategy (i.e., sensitivity reanalysis), (iii) evaluating the data analytic strategy, and (iv) reevaluating the data with a different data analytic strategythe  (i.e., strong reanalysis). 
Data analytic choices
In their original analyses, Head and colleagues use four selection steps that require some justification. These four steps encompass selecting only (i) papers with one Digital Object Identifier (DOI), (ii) papers with non-zero authors, (iii) p-values smaller than .05 (i.e., < .05), and (iv) exactly reported p-values (i.e., p = ...). Below, I evaluate these four non-standard choices, which could affect results. I argue that (i) and (iii) seem invalid and (ii) and (iv) seem valid.
Choice (i) results in retaining only those papers with one DOI, which seems conservative. Retaining only papers with exactly one DOI results in the elimination of 84,409 p-values across 13,904 papers from the full dataset with 2,131,454 p-values across 243,569 papers in PubMed. However, no substantive reasons are given for the elimination of papers without a DOI or with multiple DOIs. In fact, eliminating those without DOIs would result in eliminating p-values from perfectly valid articles or older articles, considering DOIs were only initiated in 1999 [3]. Upon manual inspection of a small sample, articles with multiple DOIs proved to include links to advanced online publications of the same paper under a different DOI or discussion papers that accompany the original paper. Retaining the papers with zero or > 1 DOIs therefore seems warranted.
Choice (ii) includes the removal of zero-author papers, which is justifiable. Zero-author papers are most likely editorials, corrections, retractions, etc. These "papers" provide only little information and the p-values they do report are most likely not original p-values, but reproductions provided of p-values reported in another paper. Eliminating these zero-author papers therefore seems a wise choice.
Choice (iii) selects all p-values < .05, because , and (iii) discussing the original authors "suspect that many authors do not regard p = .05 as significant" [4]. Previous investigation of p-values reported as exactly .05 revealed that 94.3%findings in light of 236 cases interpret this as statistically significant [5]. This goes against Head and colleagues their assumption that most researchers do not interpret p = .05 as significant, which is why I argue that the selection should be p ≤ .05 and not p < .05literature.
Choice (iv) retains only the exactly reported p-values, which eliminates potential bias in reported p-values due to the reporting of significance thresholds instead of precise p-values. In other words, if frequencies of inexactly reported results (e.g., p < .05) would be included in the analyses, this would artefactually inflate the frequencies, such as the frequency of the significance threshold .05. This could lead to more "evidence" for p-hacking. Hence, retaining only exactly reported p-values is important to eliminate such artefactual results.
Sensitivity reanalysis
The previous section indicated that two of four data analytic choices are disputable, which warrants sensitivity reanalysis. I define a sensitivity reanalysis as a reanalysis where only adjustments are made to the data selection and it is inspected whether original results hold. This is opposite to a strong reanalysis, where changes are made to the data analytic strategy. In this sensitivity reanalysis I eliminated the selection based on DOIs and changed the selection of p < .05 into p ≤ .05.
As a result of these changes in the reanalysis, evidence for p-hacking became stronger across the board, mainly due to changing the selection of p < .05 to p ≤ .05. For example, the evidence for p-hacking in the Results section across all fields was strong originally (P = .546 where P is proportion, lower 95% CI [.535], p < .001) and even stronger afterwards (P = .731, lower 95% CI [.723], p < .001). All other results also showed stronger evidence for p-hacking in the reanalysis than in the original results. However, in the next section I argue that this data analytic strategy is suboptimal and that a different strategy removes all evidence for p-hacking.
Data analyticReanalytic strategy
Head and colleagues their data analytic strategy focused on comparing frequencies in the last and penultimate bins from .05 at a binwidth of .005. Based on the tenet that p-hacking introduces a left -skew p-distribution [12], evidence for p-hacking is present if the last bin has a sufficiently higher frequency than the penultimate one in a binomial test. Applying the binomial test to two frequency bins has previously been used in publication bias research and is typically called a Caliper test [64, 75].], applied here specifically to test for left-skew p-hacking.
Of vital importance inThe two panels in Fig 1 describe the Caliper test is the careful selection of p-values in the original and current paper. The top panel shows the selection made by Head et al. (i.e., .04 < p < .045 versus .045 < p < .05), where the right bin shows a slightly higher frequency bins that are compared. When inspecting than the left bin. This is the evidence Head et al. found for p-hacking, selecting the two final bins at .05 is logical, if the p-values are not subject to any biases.. However, p-values are subject to reporting tendencies,if we expand the range and look at the entire distribution, we see that this is an unrepresentative part of which one is already eliminated by excluding the inexactly reported p-values. Upon inspecting the frequency the distribution of significant p-values.

Fig. 1.  belowHistogram of p-values as selected in Head et al. (.04 < p < .045 versus .045 < p < .05 in Fig. 1, it is readily seen that exactly reported p-values suffer from ; top) and the full p-value distribution ≤ .05 (binwidth = .00125; bottom).

The bottom panel in Fig 1 indicates there is a reporting tendency at the second decimal for p-values larger than or equal to .01. If no reporting tendencies existed, the distribution would show a reasonably smooth distribution, resembling the distribution between 0 and .01. However, the depicted distribution violates this, where p-value frequencies drastically increase at each second decimal place. Post in the distribution. A post-hoc explanations for this include that it is common practice in science to report numeric values to the second decimal and that reporting of p-values is no exception. In psychology,explanation for this is that three decimal reporting of p-values has only been prescribed since 2010 [8]. It therefore seems plausible that a second-decimal reporting tendency creeps into the current data and needs to be taken into account when evaluating the evidence for p-hacking. Such second-decimal reporting bias can be corrected for by selecting bins adjacent to round second decimals, as is done in the strongin psychology [8], where it previously prescribed two decimal reporting [7, 8]. Because reporting has occurred to the second decimal place for a long time and can be seen to have a substantial effect on the distribution, I think it is important to take this into account in the bin selection.
Head et al. selected the bins as indicated in the top panel in Fig 1, removing the second decimal. For their tests of p-hacking, they compared the bin frequency of the adjacent bins .04 < p < .045 versus .045 < p < .05. The original authors “suspect that many authors do not regard p = .05 as significant” [1], which is why they eliminate the second decimal from their analyses by using the selection criterion < .05. Previous investigation of p-values reported as exactly .05 revealed that 94.3% of 236 cases interpret this as statistically significant [9].
This contradicts the premise that most researchers do not interpret p = .05 as significant, which removes the reason for eliminating the second decimal. Consequently, only exactly reported p-values smaller than or equal to .05 were retained for the reanalyses, whereas Head et al. retained only exactly reported p-values smaller than .05. Moreover, because of reporting tendencies and the inclusion of the second decimal, the analyses need to compare the frequencies below .04 and .05 (e.g., .03875 < p < .04 versus .04875 < p < .05 for binwidth .00125). This corresponds to the two bins shown in the bottom panel of Fig 1 at .04 and .05.
In this paper, binomial proportion tests for left-skew p-hacking were conducted in both the frequentist and Bayesian framework, where H0: Prop. ≤ .5. The frequentist p-value gives the probability of the data if the null hypothesis is true, but does not quantify the probability of the null and alternative hypotheses. A Bayes Factor (BF) quantifies these latter probabilities, either as BF10, the alternative hypothesis versus the null hypothesis, or vice versa, BF01. A BF of 1 indicates that both hypotheses are equally probable, given the data. In this specific instance, BF10 is computed and values > 1 can be interpreted, for our purposes, as: the data are more likely under left-skew p-hacking than under no left-skew p-hacking. BF10 values < 1 indicate that the data are more likely under no left-skew p-hacking than under left-skew p-hacking. The further removed from 1, the more evidence in the direction of either one hypothesis, which were assumed to be equally likely in the prior distribution. For the current analyses, equal priors were assumed.
Reanalysis results
Results of the reanalysis below.
 
Fig. 1. Histogram of p-values ≤ .05 (binwidth = .00125).
Strong reanalysis
In order to take into account the two-decimal reporting tendency, I propose adjusting the frequency bins used in testing for p-hacking. The application of the Caliper test, where frequencies of two bins are compared, is maintained. However, instead of selecting the two final bins, the bins adjacent to round second decimals are chosen. Additionally, the binwidth is adjusted from .005 to .00125 for more precision and comparability with previous research [9, 10]. This results in comparing the frequencies for the bins (.04875-.05) and (.03875-.04) in a one-tailed binomial test (H0: P ≤ .5).
The results of the strong reanalysis indicate that no evidence for left-skew p-hacking remains when we take into account a second-decimal reporting bias. AcrossInitial sensitivity analyses using the original analysis script strengthened original results after eliminating DOI selection and using p ≤ .05 as selection criterion instead of p < .05. However, as explained above, this result is confounded due to not taking into account the second decimal. Reanalyses across all disciplines, the test showed no evidence for left-skew p-hacking yields P, Prop. = .417, p > .999, BF10 < .001 for the Results sections and PProp. = .358, p > .999, BF10 < .001 for the Abstract sections. These results are not dependent on binwidth .00125, as is seen in Table 1 where results for alternate binwidths are shown. Separated per discipline, no binomial test for left-skew p-hacking is statistically significant in either the Results- or Abstract sections (see S1 File). This indicates that the effect found originally by Head and colleagues does not hold when we take into account that reported p-values show reporting bias at the second decimal.

Table 1. Results of reanalysis across various binwidths (i.e., .00125, .005, .01). 
	
	
	Abstracts
	Results

	 Binwidth = .00125
	(.03875−.04)
	4597
	26047

	
	(.04875−.05)
	2565
	18664

	
	Prop.
	[bookmark: _GoBack]0.358
	0.417

	
	p
	>.999
	>.999

	
	BF10
	<.001
	<.001

	Binwidth = .005
	(.035−.04)
	6641
	38537

	
	(.045−.05)
	4485
	30406

	
	Prop.
	0.403
	0.441

	
	p
	>.999
	>.999

	
	BF10
	<.001
	<.001

	Binwidth = .01
	(.03−.04)
	9885
	58809

	
	(.04−.05)
	7250
	47755

	
	Prop.
	0.423
	0.448

	
	p
	>.999
	>.999

	
	BF10
	<.001
	<.001



Discussion
The current reanalysis thus finds no evidence for widespread left-skew p-hacking. This might seem inconsistent with previous findings, such as the low replication rates in psychology [10] or high self-admission rate of p-hacking [11]. However, these results are not necessarily inconsistent because they are not mutually exclusive, as explained below. 
Low replication rates could be caused by widespread p-hacking, but can also occur under systemic low power [12, 13]. Previous research has indicated low power levels in, for example, psychology [14, 15] and randomized clinical trials [16]. As a consequence of low power it is often argued that there is a high prevalence of false positives [17], which would result in low replication rates.
Additionally, high self-admission rates of p-hacking [11] pertain to such behaviors occurring at least once. Even if there is widespread occurrence of p-hacking across researchers, this does not necessitate frequent occurrence. In other words, a researcher might admit to having p-hacked sometime during his career, but this does not necessitate that it occurred frequently. Moreover, as noted in the introduction, not all p-hacking behaviors lead to left-skew in the p-value distribution. The method used to detect p-hacking in this paper is sensitive to only left-skew p-hacking and it is therefore possible that other types of p-hacking occur, but are not detected.
In this reanalysis two minor limitations remain with respect to the data analysis. First, selecting the bins just below .04 and .05 results in selecting non-adjacent bins. Hence, the test might be less sensitive to detecting left-skew p-hacking. In light of this limitation I ran the original analysis from Head et al., but included the second decimal, which resulted in the comparison of .04 ≤ p < .045 versus .045 < p ≤ .05. This analysis also yielded no evidence for left-skew p-hacking, Prop. = .457, p > .999, BF10 < .001. Second, the selection of only exactly reported p-values might have distorted the p-value distribution due to minor rounding biases. Previous research has indicated that p-values are somewhat more likely to be rounded to .05 rather than to .04 [18]. Therefore, selecting only exactly reported p-values might cause an underrepresentation of .05 values, because p-values are more frequently rounded and reported as < .05 instead of exactly (e.g., p = .046). This limitation also applies to the original paper by Head et al. and is therefore a general, albeit minor, limitation to analyzing p-value distributions.
Conclusion
These reanalyses indicate that the evidence for p-hacking is either underestimated (sensitivity reanalysis) or artefactual (strong reanalysis). The problem of second-decimal reporting bias is, in my opinion, something that cannot be neglected and therefore I conclude that the data provided by Head and colleagues yields no substantial evidence for widespread p-hacking throughout the sciences. This is in line with a previous reanalysis that indicated that the paper that initiated the line of research into p-hacking [9] did not provide sufficient evidence for p-hacking after [11]. In sum, this reanalysis yields no evidence for widespread p-hacking.
Based on the results of this reanalysis, it can be concluded that the original evidence for widespread evidence of left-skew p-hacking [1] does not hold. Additionally, absence of evidence for left-skew p-hacking should not be interpreted as evidence for the absence of left-skew p-hacking. In other words, even though no evidence for left-skew p-hacking was found, this does not mean it does not occur at all — it only indicates that it does not occur so frequently such that the aggregate distribution of significant p-values in science becomes left-skewed.
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