ROUGH DRAFT authorea.com/56653
Main Data History
Export
Show Index Toggle 0 comments
  •  Quick Edit
  • The influence of attention on the probability and fidelity of immediate visual memory

    Abstract

    Abstract

    Abstract would go here

    Introduction

    Introduction would go here

    Experiment 1

    General introduction to E1 here.

    Methods

    Design

    The experiment employed a traditional exogenous cuing paradigm whereby targets appeared in peripheral locations following a peripheral cue and participants were asked to indicate detection of these targets as rapidly as possible. Additionally, on each trial a color wheel appeared immediately after detection response on which participants were asked to indicate the color of the preceding target. Variables were manipulated within-participants and included Cue Validity (valid vs neutral vs invalid) and SOA (100ms, 800ms). Targets could appear on the left or right side of the screen and on 20% of trials no target was presented, serving as catch trials to discourage anticipatory responding. Thus, 3\(\times\)2\(\times\)2\(\times\)5 = 60 trials are necessary to complete the design. A total of 480 trials were presented to participants across 8 blocks, where order of trials was randomized within each block of 60 trials and participants were provided opportunity to take a break every 30 trials. Participants also completed 30 practice trials sampled randomly from the 60 trials of the complete design.

    Participants

    Participants were recruited from a local undergraduate participant pool and included a total of 40 individuals (8 male, 5 left-handed, aged between 18 and 25). Participants received course credit compensation.

    Materials

    The experiment was coded in the python and run on a Mac mini computer with a 2GHz processor running Mac OS X 10.5.7. Responses were collected via USB keyboard and mouse. Stimuli were displayed using a 19-inch CRT screen at a resolution of 1024\(\times\)768 pixels and a refresh rate of 120Hz. Participants were seated 60cm from the screen and instructed to maintain this distance by checking their position using a measured length of string during each break in the experiment. The central fixation stimulus was a cross subtending 0.5\(^\circ\)with a line thickness of 0.05\(^\circ\). The target stimulus was an “x” with the same dimensions as the fixation stimulus. A box, subtending 1.5\(^\circ\)and with a line thickness of 0.3\(^\circ\), surrounded the fixation stimulus and the two peripheral target locations, which were offset from center on the left and right by 7\(^\circ\). The colour of the central fixation stimulus was set to 50% white (medium grey) and the colour of the boxes was set to 20% white (dark grey). The cue consisted of a 50ms change in the brightness of one of the boxes to white. The target colour was selected randomly trial to trial from an RGB color wheel. During target colour selection, a randomly rotated color wheel was presented as a central ring with a radius subtending between 5.3\(^\circ\)and 7.5\(^\circ\).

    Procedure

    Following consent procedures, participants received verbal instructions describing the task (for complete script, see Appendix A). Each block started with the presentation of the fixation stimulus for 1s. A trial began with the onset of the three boxes, followed by the cue 1000ms later. Upon completion of the trial’s SOA, the target appeared and remained on screen for 200ms. After response or response timeout after 1500ms, the screen was cleared and a color wheel and mouse cursor were presented on screen. Upon clicking an area of the color wheel, the screen was cleared, leaving only the fixation stimulus for 1000ms before the beginning of the next trial.

    Results

    Data pre-processing

    All analyses were performed using R (R Core Team, 2015). All trials during which a response was made when there was no target on screen (1.7% of trials overall) were removed. Trials were further filtered on the basis of response time using a mild yet robust trimming procedure whereby, for each participant and cell of the experimental design, RTs were first log-transformed then any log-RT deviating from the median by more than 5 times the median absolute deviation from the median (“MADM”) was flagged for rejection. Application of trimming on the logarithmic scale assures that the slow responses and fast responses have equal weight despite the positive skew typical of RT data. Use of the median and MADM ensure robust application of trimming to a given observed RT that is less sensitive to the presence of even more extreme RTs. Application of this procedure yields a rejection of \(2\%\) of trials.

    Modeling

    Detection and memory response data were analyzed separately, but using the same general framework for Bayesian inference. For bot