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General remarks

We thank the referee for his/her work reviewing our paper.

The report asks us to give further details on (i) numerical stability and (ii) computational
performance of our method. We feel that (i) is rather academic, because we prove the conver-
gence of fixed-point iteration under explicit conditions on θ and λ which exclude ill-conditioned
eigenvalues—and, numerically, DPT is really just matrix multiplication. Nonetheless, we have
added Fig. S4-S5 as well as SI G supporting the claim that DPT is both accurate and nu-
merically stable (within its domain of convergence). Regarding (ii), we have added a timing
comparison with LAPACK on large dense matrices (up to size N = 131, 072), showing a 30-
90x speedup (Fig. 4). We also added a link to a public repository containing our code for
reproducibility. Edits in the main text are highlighted in blue.

We note that the referee did not offer comments on the physical or theoretical aspects of our
method. These are, however, the main focus of our Letter, in line with PRL’s scope as a physics
journal. We intend to give more details on the implementation of DPT on parallel architectures
and other computational aspects in a more suitable venue at a later stage.

Moreover, we observe that some of the referee’s comments (on “unphysical” solutions or “subjec-
tive [. . . ] boundary conditions”) appear to refer to algorithms other than DPT. We emphasize
that our paper gives explicit conditions under which DPT provably converges to a complete set
of eigenvectors, without any ambiguity or user-driven choices. Surely our algorithm cannot be
criticized for the shortcomings of its competitors.

Response to specific comments

Comment 1

The proposed dynamic perturbation theory (D-PT) is not general. It is formulated only for
matrices with non-degenerate (simple) eigenvalues.

This comment suggests that the exclusion of degenerate eigenvalues is a peculiar deficiency of
our method. This is misleading in several ways:

• Degenerate eigenvalues present a challenge for any eigenvalue algorithm because they
correspond to singularities in the complex λ plane. (In the language of numerical analysis,
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degenerate spectra have infinite condition number.) Moreover, many important results in
matrix perturbation theory (e.g. the Bauer-Fike theorem) assume simple eigenvalues, as
do many physics texts on quantum mechanical perturbation theory.

• Algorithms such as non-degenerate RS-PT (which the simple eigenvalues of the unper-
turbed matrix to be simple) are not generally seen as defective or “not general”. Instead,
it is usually understood that degenerate eigenvalues must be treated separately, for in-
stance by diagonalizing the perturbation ∆ in the degenerate eigenspace (a procedure
called “degenerate perturbation theory” in quantum mechanics). The same is true of our
method.

• We prove the convergence of D-PT for any matrix M = D + ∆ such that ‖θ‖‖∆‖ <
(3−2

√
2). This is as “general” a result as one can hope for in the context of perturbation

theory. A similar result for RS-PT (see e.g. (Kato, 1966)) is usually considered a “general”
theorem of perturbation theory.

• From a strictly mathematical perspective, degenerate spectra are not generic: they form a
nowhere dense, zero-measure subset of the space of square matrices. While this comment
is moot in physics applications (where symmetries almost always induce degeneracies), it
is relevant in other fields where perturbative eigenproblems play an important role, e.g.in
molecular evolutionary theory (the application which motivated this work).

The reported illustrations are with highly specialized trivial real symmetric matrices (2 × 2 or
3 × 3) or with a still simple, small size 100 × 100 real non-symmetric matrix with random
numbers (as the elements of M) distributed uniformly in the interval [-1,1].

This was already inaccurate in the original submission (Fig. S1 and former Fig. 4 considered
sparse random matrices of size up to 104× 104 and 106× 106 respectively). The present version
includes further timings and accuracy checks for dense, complex matrices without any special
structure (other than being near-diagonal) of size up to 105 × 105, see comment 5 below.

No complex matrices are exemplified in the illustrations of the D-PT.

The new tests of numerical accuracy of DPT in Fig. S4 are with non-Hermitian complex matri-
ces. Generally speaking, moving from real to complex matrices is completely innocent, as DPT
relies only on matrix multiplication.

Stability of the eigensolutions in the D-PT critically depends on symmetry properties of M. This
could impact detrimentally on stability of eigensolutions as incorporating good initial conditions
becomes a notable problem.

This comment is unclear to us, and appears to conflate the following distinct statements, neither
of which is specifically about DPT: (i) unlike general matrices, Hermitian matrices are always
well-conditioned and are subject to strong stability results (realness of eigenvalues, Weyl’s theo-
rem on perturbations of eigenvalues) (ii) choosing good initial conditions is important for certain
iterative eigenvalue algorithms such as Lanczos or Arnoldi. We answer these distinct comments
as follows:

• (i) Although important in other contexts, the issue of condition numbers for non-
Hermitian matrices is of little relevance to the physics audience of PRL. In physics, M is
almost always the Hamiltonian operator of a quantum system, and is therefore Hermitian
by definition. Given the space constraint of a Letter, we do not deem it appropriate to
address this topic here.

• (ii) Unlike other iterative eigenvalue algorithms which leave the starting vector unspe-
cified, our method provides a definite initial condition: the identity matrix A(0) = I,
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corresponding to approximating the eigenvalues of M by the diagonal elements of D.
There is no ambiguity regarding “good initial conditions” in our method other than the
partitioning of M itself.

Besides, there is no particular intrinsic dependence of the stability on any symmetry of the
matrix. For example, the condition ‖θ‖‖∆‖ < (3 − 2

√
2), which guarantees the convergence,

does not rely on any symmetry considerations.

Comment 2

The Rayleigh-Schrödinger perturbation theory (RS-PT) fails for degenerate spectra. Neverthe-
less, the perturbation formalism of quantum mechanics has overcome this drawback by resorting
to the brilliantly Padé-approximant-based resummation of the Brillouin-Wigner perturbation
theory (BW-PT) for operators and/or matrices with degenerate spectra.

• “Brilliantly Padé-approximant-based resummation of the Brillouin-Wigner perturbation
theory” is not how degenerate eigenvalues are commonly dealt with in quantum mechanics.
Instead, the standard procedure is to diagonalize the perturbation ∆ in the degenerate
eigenspace and use the corresponding eigenvectors as starting points for RS-PT.

• While it is true that BW-PT does not require D to have distinct diagonal elements (unlike
RS-PT), the comparison with D-PT is not pertinent: BW-PT is an implicit method which
does not by itself provide numerical approximations for the eigenpairs of M . Our method,
by contrast, is explicit: it provides formulas approximating the eigenpairs of M to arbitrary
order in λ.

• Finally, the introduction recalls that Padé approximants are useful to improve the con-
vergence of (RS- or BW-) PT—as are many other techniques. We are unsure why the
referee singles out this particular method here, or what makes it more “brilliant” than
other techniques in his/her eyes. However, we have added a reference to Brillouin-Wigner
perturbation theory in the introduction.

Comment 3

The D-PT is not practical. The reason is in solving not only one, but many non-linear alge-
braic equations, say L in total (L = L1 , L2 , . . . , Lmax ). Each of these L’s gives a set of
eigensolutions.

As explained in the main text and SI, D-PT solves as many algebraic equations as eigenpairs are
requested. For a complete set of eigenpairs, that isN algebraic equations in CN . What makes this
“not practical”? This is as it must be. Note that although each equation has a form z = Fn(z)
and, indeed, generically has N different solutions, D-PT, when converges, nevertheless, picks
only one of them for each equation, providing a single solution A.

The non-linear equations necessitate the starting values to initiate the iteration process. The
boundary conditions to each of the algebraic equations in the D-PT are unknown. Guessing the
initial values is subjective, to say the least.

The initial (not “boundary”) conditions are not “unknown”: given a partition of M as D+λ ∆,
DPT uses a non-ambiguous set of initial conditions for fixed-point iteration, namely A(0) = I.
The only “subjective” element in this procedure is the partitioning itself—but this is a feature
of any perturbation theory, by definition. The need for starting values has nothing to do with
the “non-linear” nature of the equations.
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Some surmised/estimated, insufficiently good starters to nonlinear equations can lead to the
wrong results, irrespective of the status of the convergence issue (convergence to the wrong
result is not infrequent for implicit non-linear algebraic equations).

Once again, we prove convergence to the right results under the condition ‖θ‖‖∆‖ < (3− 2
√

2)
with the explicit (not “surmised/estimated”) initial condition A(0) = I. Here too, the referee
appears to be referring to issues of other iterative methods for the eigenvalue problems (e.g. the
Lanczos or Arnoldi algorithms), and not to our proposed algorithm.

Comment 4

In practice, the elements of M are not ideal entries, i.e. they enter the analysis with their
intrinsic inaccuracies. Matrix elements can come from some elaborate computations with finite
arithmetics (computational round-off errors) or they can be some empirical data stemming from
experimental measurements (inevitably contaminated with noise–systematic, random, etc).

This is true, but since we never require or mention “ideal entries”, we do not see the relevance
of this comment.

For such matrices routinely encountered in practice, the D-PT would give some non-unique
eigensolutions.

This claim is unsubstantiated and incorrect. Once again, we prove convergence of DPT to a
unique attracting fixed point containing a complete set of eigenvectors of M whenever ‖θ‖‖∆‖ <
(3− 2

√
2). Unless errors in M violate this bound, uniqueness of eigensolutions is guaranteed.

Stated equivalently, there is no guarantee that the eigensolutions would not vary from one to
another set of the eigensolutions. Some of the eigensolutions might be found in one or more
subsets of all the L sets of the eigensolutions. However, there could also be some spurious
eigensolutions that would differ from one to another set in {L1,L2,. . . ,Lmax}. A key procedure
is lacking in the D-PT for separating the unphysical from physical eigensolutions.

Unlike other algorithms, DPT does not generate “spurious” or “unphysical solutions”. Our
method provably converges to a complete set of eigenpairs under the condition recalled above;
other solutions of A = F (A) are not seen by DPT, as explained in SI A. No “key procedure” is
lacking.

Comment 5

Some of the existing generic well-known eigenvalue solvers can expediently extract millions of
eigen- values from general non-Hermitean complex matrices. Any newly proposed eigenvalue
solver (perturbative or nonperturbative alike) should be benchmarked on at least modestly sized
non-Hermitean complex matrices (e.g. 1000 × 1000 or so) with elements corrupted by 5-20%
random Gaussian-distributed noise (to mimic the experimental data) in a fixed interval.

As already noted, Fig. S1 and 4 examine sparse matrices of size up to 104 × 104 and 106 × 106

respectively. The new figures address performance and numerical stability (two distinct issues)
as follows:

• Performance: As detailed in SI G, Fig. 4 now compares the performance of DPT on a
dual AMD EPYC 7702 with 128 CPU cores using Intel MKL and a NVidia V100 GPU
using MAGMA (Dongarra et al., 2014), in single precision. We obtained 30-90x speedups
over these (highly optimized) reference routines.
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• Stability : We added two new supplementary figures. Fig. S4 considers the numerical
accuracy of DPT vs. that of LAPACK for non-Hermitean complex matrices of size 2048
with varying λ ∈

[
10−4, 0.5

]
computed in double precision. We find that DPT is at least

one order of magnitude more accurate than Intel MKL’s geevx (and up to orders of
magnitude in single precision, where stability issues are magnified). Fig. S5 illustrates
the forward stability of the eigenvalues E of the symmetric matrix defined by Eq. (6)
with N = 1000 after entries were perturbed by a normal distribution with mean µ ∈[
10−7, 10−2

]
and deviation 2µ.

References

Perturbation theory in a finite-dimensional space. (1966). In Perturbation theory for linear
operators (pp. 62–126). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-

12678-3_2

Accelerating Numerical Dense Linear Algebra Calculations with GPUs. (2014). In Numerical
Computations with GPUs (pp. 3–28). Springer International Publishing. https://doi.org/

10.1007/978-3-319-06548-9_1

5

https://doi.org/10.1007/978-3-662-12678-3_2
https://doi.org/10.1007/978-3-662-12678-3_2
https://doi.org/10.1007/978-3-319-06548-9_1
https://doi.org/10.1007/978-3-319-06548-9_1

