Although superficially different—and associated to different vocabularies—, these localization phenomena boil down to the same mathematical fact, which is that the eigenvectors of the relevant linear generator are "caught by disorder" \cite{Stollmann_2001}i.e. localize in small subregions of \(X\) when \(\phi\) is sufficiently rugged and \(\mu\) sufficiently small. This mathematical fact is what allows evolving populations to preserve genetic information in the face of random mutations, electrons to localize rather than diffuse in disordered metals, and glasses to age without ever relaxing to equilibrium.