
The dynamical analysis of fitness landscapes

Matteo Smerlak1

1Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

June 4, 2020

Abstract1

Growing efforts to measure fitness landscapes in molecular and microbial systems aim to enlighten, and eventually2

predict, evolutionary trajectories. As in other instances of non-equilibrium dynamics, this task is complicated by the3

lack of a general optimization principle: depending on their mutation rate, Darwinian populations can alternatively4

climb the closest fitness peak (survival of the fittest), settle in lower regions with higher mutational robustness5

(survival of the flattest), or fail to adapt altogether (error catastrophes). Here I establish an equivalence between6

selection-mutation dynamics in infinite populations and a certain driven diffusion process in type space, from which7

I derive (i) a general prescription to identify metastable evolutionary states in a complex fitness landscape, as local8

minima of the effective potential, (ii) a predictive coarse-graining of evolutionary dynamics, based on their basins of9

attractions and saddles between them, and (iii) a natural evolutionary Lyapunov function. These results apply to10

any model of evolutionary dynamics, including Eigen’s “quasispecies” and Crow and Kimura’s “paramuse” models.11

Because the effective potential is computed from the ground state of a quantum Hamiltonian, my approach could12

stimulate fruitful interactions between evolutionary dynamics, non-equilibrium statistical mechanics and quantum13

many-body theory.14

Introduction15

Darwinian evolution is the motion of populations in the space of all possible heritable types graded16

by their reproductive value, the fitness landscape (Stadler, 2002; Orr, 2009; Fragata et al., 2019).17

In Wright’s vivid words, the interaction of selection and variation enables populations to “con-18

tinually find their way from lower to higher peaks” (Wright, 1932), thereby providing a universal19

mechanism for open-ended evolution (de Vladar et al., 2017). Thanks to the explosive development20

of sequencing technologies, fitness landscapes have now been measured in a variety of real molecu-21

lar (Blanco et al., 2019), viral (Dolan et al., 2018) or microbial (de Visser and Krug, 2014) systems.22

As a result, the goal of predicting evolution no longer appears wholly out of reach (Weinreich, 2006;23

Lobkovsky and Koonin, 2012; de Visser and Krug, 2014; Lässig et al., 2017; de Visser et al., 2018).24
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In essence, if we know the topography of the fitness landscape—its peaks, valleys, ridges, etc.—we25

should be able to compute where a population is likely to move next. Making such predictions from26

high-resolution fitness assays is a central challenge of quantitative evolutionary theory.27

In keeping with Wright’s description of evolution as a hill climbing process, quantitative analysis28

of empirical fitness landscapes (McCandlish, 2011; Szendro et al., 2013) has so far focused on the29

distribution of fitness maxima and the length of adaptive (fitness-increasing) walks in genotype30

space (Kauffman and Levin, 1987; Franke et al., 2011). What these fitness-centric measures fail31

to capture, however, is the fact that populations with different mutation rates experience the same32

fitness landscape differently. This is already clear if we consider the rate of fitness valley crossings,33

which strongly depends on the mutation rate (van Nimwegen and Crutchfield, 2000; Weissman et al.,34

2009) and therefore cannot be computed from topographic data alone. But Eigen’s quasispecies35

theory (Eigen, 1971)—an infinite-population formalism relevant to molecular and viral evolution36

(Domingo and Schuster, 2015)—showed that varying mutation rates can also have a qualitative37

effect on evolutionary trajectories, potentially leading to error catastrophes and the loss of adapta-38

tion. More subtly, mutational robustness has been shown to evolve neutrally (van Nimwegen et al.,39

1999) and to sometimes outweigh reproductive rate as a determinant of evolutionary success (“sur-40

vival of the flattest”) (Wilke et al., 2001; Codoñer et al., 2006). These evolutionary bifurcations41

are not mere theoretical curiosities: lethal mutagenesis—an effort to push a population beyond its42

error threshold—is a promising therapeutic strategy against certain viral pathogens (Eigen, 2002;43

Domingo and Perales, 2019) and perhaps cancer (Solé and Deisboeck, 2004).44

These results raise fundamental questions regarding the dynamical analysis of fitness landscapes:45

When is flatter better than fitter? Where are the evolutionary attractors in a given landscape46

with ruggedness and/or neutrality? What quantity do evolving populations optimize? Can we47

estimate the time scale before another attractor is visited? More simply, can we predict the future48

trajectory of an evolving population from its current location, the topography of its landscape, and49

the mutation rate?50

In this paper I outline a mathematical framework to address these questions in large, asexual popula-51

tions, for both genotypic (discrete, high-dimensional) and phenotypic (continuous, low-dimensional)52

fitness landscapes. Inspired by Nelson’s stochastic reformulation of quantum dynamics (Nelson,53

1966; Yasue, 1978), I show that the selection-mutation process can be understood as a random54

walk or diffusion in an effective potential—the same kind of dynamics as, say, protein folding55

kinetics (Bryngelson et al., 1995). This representation reduces the a priori difficult problem of56

identifying evolutionary attractors and dominant trajectories in a complex fitness landscape to the57

much more familiar problem of Markovian metastability (Hänggi et al., 1990). In contrast with58

another classical Markovian model of evolution, Gillespie’s adaptive walk model (Gillespie, 1983;59

Kauffman and Levin, 1987; Sella and Hirsh, 2005), my approach is not restricted to the SSWM60
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regime and fully accommodates genotypic and/or phenotypic heterogeneity in evolving popula-61

tions (Gerrish and Lenski, 1998; Park and Krug, 2007). Moreover, because the effective potential62

integrates fitness and mutational robustness in a single function on the space of types, it is also63

more suited to analyze—and eventually predict—the dynamics of a population than the bare fitness64

landscape from which it derives.65

Results66

Selection-mutation dynamics67

Consider a fitness landscape Φ = (X,∆, φ), consisting of a space of types X, a mutation operator

∆ on X and a (Malthusian) fitness function φ : X → R. The nature of the landscape is left

unspecified: Φ could be a be genotypic landscape, in which case X will be a finite graph (usually

a hypercube or some more general Hamming graph), and ∆ its Laplacian matrix; or Φ could

be a “quantitative trait”, phenotypic landscape, and then X will be a domain of Rd and ∆ a

differential operator thereon, usually the Laplacian (if mutational effects are sufficiently small and

frequent). We further assume a large asexual population evolving on this landscape according to

the continuous-time Crow-Kimura (Crow and Kimura, 1970) selection-mutation equation, which

can be linearized to
∂ft(x)

∂t
= φ(x)ft(x) + µ∆ft(x) +O(1/N), (1)

where ft(x) is the (unnormalized) distribution of types x ∈ X at time t and µ the mutation rate68

per individual per unit time. In contrast with previous analytical works which focused on finding69

exact solutions to (1) (Baake and Wagner, 2001), our goal is to understand the motion of the70

distribution pt(x) in the landscape without making restrictive assumptions on its topography. This71

is necessary for the predictive analysis of real fitness landscapes, which do not have the symmetries72

of soluble models. Note that (1) assumes that mutations occur independently of replication events.73

The results in this paper do not depend on this assumption: we could equally well consider Eigen’s74

quasispecies model (Eigen et al., 1989), where mutations only arise as replication errors, or indeed75

any evolutionary model of the form ∂tft = Aft with A an essentially positive operator (i.e. one76

that preserves the positivity of ft). Finally, the O(1/N) term refers to the stochastic effect of77

genetic drift, which can be neglected when the population size N is larger than the number of78

accessible genotypes. The applicability of deterministic models has been discussed extensively79

in the literature (Eigen et al., 1989; Wilke, 2005), including from an experimental perspective80

(Domingo and Schuster, 2015).81

The linear equation (1) can be solved formally in one of two classical ways—neither of which82

turns out to be directly useful for the prediction problem. The first approach uses the Feynman-83

Kac formula to write ft(x) as a weighted sum over Brownian paths Xt (Zel'dovich et al., 1987).84
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Unfortunately, these paths cover the whole fitness landscape, i.e. they are not by themselves85

predictive. Alternatively, we can decompose ft(x) over a basis of normal modes of the operator86

A = µ∆ + φ and consider the evolution of each component independently (Eigen et al., 1989).87

This reduces (1) to a set of uncoupled growth equations, with the eigenvalues of A as growth88

rates. Accordingly, evolution is seemingly reduced to the natural selection of clouds of genetically89

related mutants, or “clans” (Eigen et al., 1989). The problem with the latter approach is that,90

of all the modes of A, only one is positive and can therefore be interpreted as a distribution,91

namely eigenfunction of A with the largest eigenvalue Λ, aka the “quasispecies” distribution Q.92

For this reason, quasispecies theory is usually understood to be an equilibrium theory: it is useful93

to characterize the asymptotic selection-mutation balance Q = limt→∞ pt, and in particular to94

determine whether this equilibrium is localized (adaptive) or delocalized (error catastrophe), but95

it cannot help us understand the approach to that equilibrium.96

Effective potential landscape97

The key observation of this paper is that knowing Q—a single eigenfunction of A—to a good

accuracy in fact goes a long way toward understanding evolutionary dynamics far from selection-

mutation equilibrium. This is because from Q we can perform a change of variable that dra-

matically simplifies the analysis of evolutionary dynamics, as follows. Consider the function

gt(x) = e−ΛtQ(x)ft(x), from which it is straightfoward to reconstruct the type distribution ft(x)

after solving for gt(x). This function evolves according to

∂gt(x)

∂t
= Lgt(x) with L = diag(Q) (A− Λ) diag(Q)−1. (2)

It is easy to check that for any essentially non-negative operator A, (2) is the forward Kolmogorov

equation of a reversible Markov process with effective potential

U(x) = −2 logQ(x). (3)

In the case where ∆ is the Laplacian operator this process is just a biased random walk/Brownian98

motion. Specifically, for discrete types L generates nearest-neighbor jumps with transition rate99

Lx→y = µ exp
(
−U(y)−U(x)

2

)
; for continuous types, L is the Fokker-Planck operator for a diffusion100

in the potential U , i.e. Lq = −∇ · j with j = µ
(
−∇q − q∇U

)
.101

Note that the interpretation of the derived Markov process departs from that of the original102

selection-mutation model in two ways. First, Q is no longer viewed as coding the asymptotic103

equilibrium between selection and mutation, in which all transients are washed out; instead, (two104

times minus) its logarithm acts a potential landscape, whose role is to prescribe the dynamics away105

from equilibrium. Second, we are used to thinking of mutations as adding a random component to106
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the otherwise deterministic flow of natural selection, with µ controlling the strength of the noise.107

Here, by contrast, µ plays the role of (i) an (inverse) time scale, and (ii) a parameter of the effective108

potential U which directs the evolution of the density in the space of types X. The noise component109

of the process itself has unit diffusivity.110

What is the benefit of replacing the selection-mutation operator A by the Markov generator L?111

The answer is that the latter has an inbuilt notion of dominant evolutionary trajectory: from112

a given type x, the preferred path is the line of steepest descent of the effective potential U .113

Moreover, thanks to the smoothing effect of mutations imprinted in the quasispecies distribution,114

the potential landscape is far simpler—in particular, less rugged—than the fitness landscape itself.115

We now illustrate these aspects in more detail.116

Bare vs. effective ruggedness117

As already mentioned, a classic approach to the ruggedness of fitness landscapes consists in counting118

the number of local fitness maxima (Kauffman and Levin, 1987). For instance, in NK landscapes119

the expected density of fitness peaks grows from 2−N (additive or “Mount Fuji” landscape) to120

(N + 1)−1 (uncorrelated or “house of cards” landscape) as the epistasis parameter K increases121

from 0 to N − 1, irrespective of the distribution of fitness components. However, the number122

of fitness peaks—the bare ruggedness of the landscape—is not directly relevant for evolutionary123

trajectories: at finite mutation rates, a low peak can be indistinguishable from no peak.124

The reformulation above shows that the true evolutionary attractors are the local maxima of Q

(local minima of U), not those of φ. But for a type x to be a local maximum of Q, it is not

enough that its fitness be greater than that of its one-step mutants. Computing Q in the forward

approximation (Pietracaprina et al., 2016), i.e. by summing only the shortest paths from the global

fitness maximum x∗, we find

U(x) ∼
µ→0

U(x∗)− 2 log
∑
π

∏
i∈π

µ

φ(x∗)− φ(πi)
. (4)

This expression shows that that for x to be a local minimum of U , φ(x) must be greater than125

φ(x∗)− µ. This condition is typically much more stringent than the requirement that x be a local126

fitness maximum; the effective potential landscape is therefore significantly smoother than the127

fitness landscape. Thus, the number of Q-maxima of an NK lansdcape does not actually increase128

with K, but does with the skewness of the distribution of fitness components (data not shown).129
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Reduced evolutionary dynamics130

Next, the Markovian reformulation immediately suggests a coarse-grained (reduced) representation

of evolutionary dynamics, as follows. For each local minimum xα of U we can consider the set of

types Xα from which xα can be reached along a U -decreasing path, its basin of attraction. The

potential barrier between two adjacent basins is then given by Bα→β = minπ maxx∈π[U(x)−U(xα)]

where π spans the directed paths connecting Xα to Xβ. According to the standard Arrhenius-

Kramers law for the transition time between minima of a potential landscape (Hänggi et al., 1990),

the basin Xα with frequency
∑

x∈Xα pt(x) is metastable if

min
β
Bα→β � 1. (5)

Large deviation theory further indicates that, of all the possible escapes from Xα to an adjacent131

basin, the transition to argminβBα→β is exponentially more likely to happen. This reduction in132

dynamical complexity is the main result of this paper.133

The coarse-grained dynamics can be represented using tools usually applied to energy landscapes,134

such as the basin hopping graphs (BHG) recently developed in the context of RNA folding (Kuchaŕık135

et al., 2014). In a nutshell, a BHG is obtained by collapsing the local minima xα and their basins136

of attraction Xα into nodes and connecting them according to adjacency relations between basins,137

weighted by the barrier height Bα→β. This representation is useful for visualizing complex fitness138

landscapes, as illustrated in Fig. 2.139

An evolutionary Lyapunov function140

Finally, the Markovian reformulation provides a novel Lyapunov function for selection-mutation141

dynamics. An evolutionary Lyapunov function (ELF) traditionally refers to one of two distinct142

concepts. The first notion of ELF is a monotonic functional of distributions over type space X;143

examples include Fisher’s variance functional in the pure selection regime (Fisher, 1930) or for144

type-independent mutation rates (Hofbauer and Sigmund, 1998), or Sella and Hirsh’s free fitness145

functional in the SSWM regime (Sella and Hirsh, 2005) (see also (Jones, 1978)). The second kind146

of ELF is a monotonic functional of distributions over distributions over type space X (i.e. over147

allele frequency distributions); Iwasa’s (Iwasa, 1988) and Mustonen and Lässig’s (Mustonen and148

Lassig, 2010) free fitness functions are of this kind.149

Here I introduced a Markovian version of evolutionary dynamics in type space which is not restricted

to pure selection or SSWM regimes. Since this Markov processes is reversible, the relative entropy

(or Kullback-Leibler divergence) D[ · ‖ · ] with respect to its equilibrium distribution ∝ e−U = Q2
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must decreases monotonically in time. This means that

F [pt] = D[Qpt ‖Q2] (6)

is a Lyapunov function for the evolutionary equation (1) for any mutation operator ∆ and any150

mutation rate µ (Fig. 3). The construction of this ELF follows the same pattern as Iwasa’s151

and Mustonen and Lässig’s (as a relative entropy), but, unlike theirs but like Fisher’s, results in a152

functional of distributions over X and not allele frequency space. Also note that F [pt] is not merely153

an additive correction to mean fitness and thus goes beyond the scope of “free fitness” functions.154

Examples155

To illustrate the predictive value of the Markovian formulation of selection-mutation dynamics we156

now consider two simulated fitness landscapes, chosen such that evolutionary attractors are not157

easily read off the landscape itself. For further biologically motivated examples see Ref. (Smerlak,158

2020), where an interesting link with a Markov process known as the maximal entropy random159

walk (Burda et al., 2009) is explored.160

Two-dimensional lattice161

We begin with a two-dimensional rugged “phenotypic”1 landscape, generated by sampling values162

from a Gaussian process with unit correlation length on a 30× 30 lattice (with periodic boundary163

conditions). In the realization shown in Fig. 1A, the fitness landscape has a unique global maximum164

(green dot); this type corresponds to the maximum of the quasispecies Q for µ ≤ 0.02 (survival of165

the fittest), but not for higher mutation rates (survival of the flattest), see Fig. 1B.166

Predicting the evolution of an initially monomorphic population directly from the topography of φ is167

clearly a difficult proposition. By contrast, examination of the effective potential U = −2 logQ (Fig.168

1C) immediately reveals the preferred directions for its evolution: the population will go downhill169

in the potential U , potentially getting transiently trapped in the basins of its local minima and170

making transitions to other basins along the lowest saddles separating them. This is indeed the171

behavior of numerical solutions of the Crow-Kimura equation (Fig. 1C).172

Binary sequences with neutrality173

As a simple model of a genotypic landscape with both ruggedness and neutrality, I considered an174

NKp landscape (Barnett, 1998) of binary sequences with length N = 8, epistasis parameter K = 6175

1Phenotypic landscapes are not expected to be rugged the way genotypic landscapes are, at least not in a biological
context. I chose this example for the ease of its visualization, as well as for its connection with Anderson localization.
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Figure 1: Evolution in a rugged 2d fitness landscape. A: The fitness landscape, obtained by
sampling a Gaussian process with unit standard deviation and unit correlation length; the global
fitness maximum is indicated by the green dot. It is a priori difficult to predict the path taken by a
population evolving in this landscape. B: The quasispecies distributions Q for two different values
of the mutation rate µ, localized at the fitness peak (low µ) or in some lower but flatter region
(high µ). C: The effective potential U = −2 logQ for µ = 0.05 is much smoother than the fitness
landscape, with few local minima which act as local attractors for an evolving population (black
dots). Note how the population conspicuously moves away from the global fitness maximum.

and neutrality parameter p = 0.7 (details in Methods). The landscape in Fig. 2 has 20 local176

maxima and an error threshold at µc ' 0.2. Comparing the basin hopping graphs of the fitness177

landscape φ and of the potential landscape U reveals that most of the complexity of the former178

is spurious. Moreover, coarse-grained evolutionary trajectories, described by the basin frequencies179

p(Xα), is consistent with the succession of transitions predicated by the basin hopping graph of U :180

a population initially concentrated around the genotype 110 (a global fitness maximum) will evolve181

towards the flatter genotype 179 via the basins of 222 and 95 (Fig. 3A).182

One also checks that the Lyapunov function (6) decreases monotonically also when the mean fitness183

〈φ〉t does not (Fig. 3A) and when the basin frequencies have strongly non-monotonic behavior (Fig.184
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3B).

Figure 2: Evolution in an NKp genotypic landscape with 28 = 256 types. A: The fitness landscape
has 20 local fitness maxima and many saddles between them, making visualization and evolutionary
prediction challenging. Here the landscape is represented as a basin hopping graph (BHG), in which
nodes are basins of attractions of fitness maxima and edges adjacency relations between basins
weighted by the barrier height. B: As the mutation rate passes a threshold at µ ' 0.2 (in units of
the maximal fitness difference), the quasispecies distribution delocalizes, as signalled by the inverse

participation ratio
(∑

xQ(x)2
)−1

/|X|. C: The BHG for the effective potential (here for µ = 0.1)
is much simpler—and immediately predictive, see Fig. 3.

185
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Figure 3: Evolutionary trajectories in the landscape of Fig. 2A, obtained by integration of the
Crow-Kimura equation. A: A population initially concentrated in basin 110 moves towards basin
179 through basins 222 and 95, as suggested by the BHG in Fig. 2C. This happens in spite of the fact
that 110 is a global fitness maximum and mean fitness decreases in time. B: Here the population
starts off concentrated at type 179 and spreads in other basins under the effect of mutations, before
returning to the basin of 179 as t→∞. This non-monotonic behavior of the basin frequency does
not prevent the evolutionary Lyapunov function to decrease monotonically.

Discussion186

Evolutionary theory has long benefited from analogies with statistical physics—the other field of187

science dealing with large, evolving populations—, see e.g. (Sella and Hirsh, 2005; Mustonen and188

Lassig, 2010; de Vladar and Barton, 2011; Smerlak, 2017). More recently, Leuthäusser (Leuthäusser,189

1986) and others (Baake et al., 1997; Saakian and Hu, 2004) have highlighted a parallel between190

evolutionary models in genotype space and certain quantum spin systems, which can be leveraged191

to compute the quasispecies distribution Q for some special fitness landscapes (Baake and Wagner,192

2001). But the scope of the analogy between evolution and non-equilibrium physics is, in fact,193

much broader: the interplay between selection and mutation is typical of localization phenomena in194
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disordered systems (Stollmann, 2001), be them classical or quantum. The linearized Crow-Kimura195

equation 1, for instance, is formally identical to the parabolic Anderson model (Zel'dovich et al.,196

1987; Carmona and Molchanov, 1994; König, 2016), a simple model of intermittency in random197

fluid flows; the linearized Eigen model in turn resembles the Bouchaud trap model (Bouchaud,198

1992), a classical model of slow dynamics and ageing in glassy systems. These physical phenomena199

have obvious evolutionary counterparts: the Anderson localization transition corresponds to the200

error threshold; intermittency to epochal or punctuated evolution; tunnelling instantons to fitness201

valley crossings; and ageing to diminishing-return epistasis. The generalization of Nelson’s mapping202

of the Scrödinger equation to a diffusion process presented in this paper implies that all are in fact203

unified under the familiar umbrella of Markovian metastability.204

The value of such analogies is twofold. On the one hand, they bring the large repertoire of results205

and techniques derived in condensed matter and nonequilibrium physics to bear on evolutionary206

dynamics; an example is the forward approximation 4. Conversely, the link between evolution and207

the physics of disordered media can stimulate new work in physics and mathematics. As already208

mentioned, the generator of selection-diffusion dynamics is not always Hermitian (it is not in Eigen’s209

model). This suggests that some of the results usually derived for random Schrödinger operators210

can likely be generalized for more general classes classes of operators, as already emphasized by211

Altenberg (Altenberg, 2012).

Figure 4: Effective potential for a non-degenerate NK landscape with N = 8 and K = 6. The FWA
approximation familiar from Anderson localization theory gives excellent results, including at large
mutation rates (left). By contrast, the bare fitness values φ are poorly correlated with the effective
potential U (right). Here mutation rates are given in units such that φ ranges from−1 to 0. -

212
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Conclusion213

A widely shared understanding of the role of mutations in evolution has them feeding raw ma-214

terial to the fitness-maximizing sieve of natural selection. But when mutation rates are high, as215

they are in e.g. RNA viruses (Drake and Holland, 1999) and likely were in early life (Eigen et al.,216

1989), evolutionary success requires more than the discovery of a high-fitness mutant genotype: the217

mutants of the new mutant must also have relatively high fitness, i.e. the mutant type must be218

mutationally robust. The effective potential U introduced in this paper combines fitness and flat-219

ness into a single evolutionary potential—should we call it “flitness”?—which directly determines220

evolutionary trajectories across the spectrum of mutation rates. I argue that instead of the fitness221

landscape itself, it is this effective potential that we should analyze, coarse-grain, etc. if we are to222

predict evolution.223

On a conceptual level, the effective potential U addresses two longstanding questions in evo-224

lution: (i) On what time scale (individual generation, infinite lineage) should “fitness” be de-225

fined (Rosenberg and Bouchard, 2015)? and (ii) What quantity does evolution optimize (Smith,226

1978)? My proposed answers are, respectively: (i) It is fine to define the fitness φ (g) of a type g as227

reproductive success over one generation, which makes it directly measurable, but one should keep228

in mind that φ (g) is not necessarily a good predictor for the success of a lineage descending from g—229

this role is played by the effective potential U (g); and (ii) like other dissipative processes, evolution230

through selection and mutations minimizes the statistical divergence to its Markovian equilibrium.231

There is an arrow of time in micro-evolution—just not one that points towards maximal fitness.232
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Methods238

From positive to Markov semigroups239

The main result of this paper is best formulated in terms of positive operator semigroups (Bátkai240

et al., 2017). A positive operator semigroup (Pt)t≥0 is one that preserves the positivity of distributi-241

ons on a space X, but not their normalization. This is the case of the linear flow (Pt) = (eAt) if the242
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non-diagonal elements of its generator A are all non-negative (i.e. A is “essentially non-negative”).243

Up to the addition of a multiple of the identity, we may further assume that the diagonal elements244

are also non-negative, i.e. A is a non-negative operator.245

The Perron-Frobenius theorem states that A has a left eigenvector Q with simple eigenvalue Λ

whose components are all positive in each irreducible component; moreover Pt = eAt converges to

the projection operator on Q as t→∞. Now, under the conditions above, the operator

L = diag(Q) (A− Λ) diag(Q)−1 (7)

is the infinitesimal generator of a reversible Markov process on X with equilibrium distribution246

∝ e−U with U = −2 logQ. This is easily proved as follows.247

If X is a discrete space (genotypic landscape), we must check that L satisfies the conditions for a

transition rates matrix, namely that L has non-negative off-diagonal elements and
∑

i Lij = 0. The

former follows from the same property for A because Lij = QiAijQ
−1
j for i 6= j. The latter follows

from Q being a left eigenvector of A with eigenvalue Λ:∑
i

Lij =
∑
i

QiAijQ
−1
j − Λ = Λ− Λ = 0. (8)

Note that, when A = µ∆ + φ with ∆ the Laplacian on a graph (such that ∆ij = 1 when i248

and j are adjacent and zero if d(i, j) > 1), then L generates nearest-neighbor jumps with rate249

Lj→i = Lij = µQiQ
−1
j = µ exp[(Ui − Uj)/2)], as stated in the main text.250

For the continuous case, consider a domain of Rd and assume for simplicity that the mutation251

operator ∆ = ∇2 is the Laplacian in that domain, generating a standard d-dimensional Brownian252

motion. In this way A is a self-adjoint Schrödinger operator. Let gt = QfΛ
t , where ∂tf

Λ
t = (A−Λ)fΛ

t .253

An explicit computation then shows that gt satisfies the continuity equation ∂tgt = −∇ · jt with254

the reversible flux jt = −µ(∇gt+ gt∇U). This is the Fokker-Planck equation for a diffusion process255

with unit diffusivity and potential U .256

Model landscapes257

The Gaussian process landscape of Fig. 1 is obtained by sampling a vector from the multivariate258

Gaussian distribution with zero mean and L2 × L2 covariance matrix Gx,y = e−d(x,y) where d259

denotes the distance function on the two-dimensional periodic lattice ZL × ZL.260

The NKp fitness landscape over the hypercube {0, 1}N with epistasis (or ruggedness) para-261

meter K, neutrality parameter p and component distribution D is defined by the formula262

φ (x) = − 1
N

∑N
i=1

fi (xi, xi+1, · · · , xi+K) bi (xi, xi+1, · · · , xi+K) where the components of the bi-263

nary string x are identified cyclically and the values of functions fi, bi : {0, 1}K+1 → R are i.i.d.264
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samples from D and Bernoulli(1 − p), respectively. Unless specified otherwise it is customary to265

take D = Uniform(0, 1). The NK model is the special case when p = 0, i.e. without neutrality.266
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