Problemas sobre fuerzas

Mayra Puente Estrada 1

¹Instituto Tecnológico Superior Zacatecas Occidente

3 de marzo de 2019

Resumen

En el presente documento se muestran algunos problemas vistos en clase referentes a la fuerza.

La fuerza es cualquier acción, esfuerzo o influencia que puede alterar el estado de movimiento o de reposo de cualquier cuerpo. Esto quiere decir que una fuerza puede dar aceleración a un objeto, modificando su velocidad, su dirección o el sentido de su movimiento.

Paso 1.- Dibujar el diagrama de cuerpo libre.

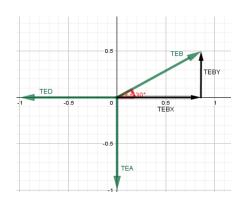


Figura 1: Diagrama de cuerpo libre.

Paso 2.- Plantear ecuaciones de equilibrio.

$$\Sigma FX = 0$$

$$\Sigma FY = 0$$

Problema 1.

Para el caso de x.

$$TEBX - TED = 0$$
 (1)

Si la masa del cilindro "C" es de 40 kilogramos, determine la masa del cilindro "A" para que el sistema esté en equilibrio.

Para el caso de y.

$$TEBY - TEA = 0 (2)$$

Utilizamos las funciones trigonométricas para **Problema 2.** calcular las componentes de TEB

$$TEBX = TEB \cos 30$$
 (3)

$$TEBY = TEB \sin 30$$
 (4)

De la figura podemos ver que la tensión en los segmentos de cuerda EB y BC es la misma y a la vez es igual al peso del cilindro C.

$$TEB = Wc$$
 (5)

Paso 3.- Resolver ecuaciones y obtener resultado para lo que sustituimos (3,4,5,6,7) en (1) y (2).

$$Wc \cos 30 - TED = 0$$

 $mc \ g \cos 30 - TED = 0$

$$TED = mc \ g \cos 30$$

$$= (40kg) \left(9.81 \frac{m}{s^2}\right) \cos 30$$
$$= 339.81 \ N$$

Ahora sustituimos (4) v (5) en (2)

$$Wc \sin 30 - WA = 0$$

$$WA = Wc \sin 30$$

$$mA \ q = mc \ q \sin 30$$

$$mA = (40kg) \sin 30mA = 70kg$$

Conclusión.- Necesitamos un cilindro Para el caso de x. con una masa de 70kg para que el sistema esté en equilibrio.

Si el bloque de 5kg está suspendido de la polea B y la cuerda está colgada 0.15m determine la tensión en la cuerda ABC. Desprecie el tamaño de la polea.

Paso 1.- Dibujar el diagrama de cuerpo libre.

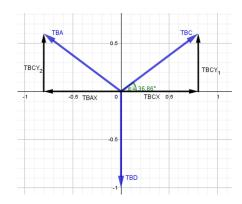


Figura 2: Diagrama de cuerpo libre.

$$TAN = \frac{C.O}{C:A}$$

$$\theta = TAN^{-1} \frac{C.O}{C.A}$$

$$\theta = TAN^{-1} \frac{0.15}{0.20} = 36.86^{o}$$

Paso 2.- Plantear ecuaciones de equilibrio.

$$\Sigma FX = 0$$

$$\Sigma FY = 0$$

$$TBCX - TBAX = 0 (1)$$

Para el caso de y.

$$TBCY + TBAY = (5kg) (9.81 \frac{m}{s^2})$$
 (2)

Utilizamos funciones trigonométricas para las componentes de las tensiones

$$TBCX = TBC \cos \theta = \frac{4}{5}TBC$$

$$TBCY = TBC \sin \theta = \frac{3}{5}TBC$$

$$TBAX = \frac{4}{5}TBa; TBAY = \frac{3}{5}TBA$$

Paso 3.- Resolver ecuaciones por lo cual sustituimos.

$$\frac{4}{5}TBC - \frac{4}{5}TBA = 0$$

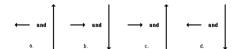
$$\frac{3}{5}TBC + \frac{3}{5}TBC = (5kg) \left(9.81 \frac{m}{s^2}\right)$$

$$\frac{6}{5}TBC = 49.05 \ N$$

$$TBC = \frac{5}{6} (49.05 \ N) = 40.83 \ N$$

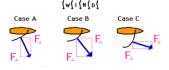
Conclusión.- para un sistema en equilibrio con las características mencionadas tendrá una tensión en la cuerda de:

$$TABL = 40.83 N$$


Problema 3.

El siguiente diagrama muestra una fuerza que forma un ángulo con la horizontal. Esta fuerza tendrá componentes horizontales y verticales.

Figura 3: Diagrama.


¿ Cuál de las opciones describe mejor la dirección de los componentes horizontales y verticales de esta fuerza?

La respuesta es el inciso D pues la fuerza se dirige hacia abajo y hacia la izquierda, es por esto que la fuerza tendrá una componente vertical hacia abajo, y una componente horizontal hacia la izquierda.

Problema 4.

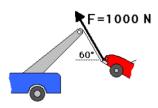
A continuación se muestran tres veleros. Cada velero experimenta la misma cantidad de fuerza, pero tiene diferentes orientaciones a vela.

¿En que caso (A, B, C) Es mas probable que el velero se vuelque de lado? Explique.

La respuesta es el caso A, ya que en éste no $FY = F \sin 60$ hay un componente perpendicular de la Fuerza, lo cual impide que el barco se vuelque.

$$FY = F \sin 60$$

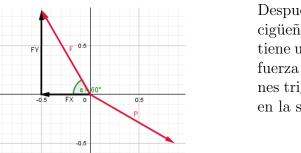
Problema 5.


Como queremos el componente vertical utilizamos:

Considera la siguiente grúa. si la fuerza de tensión en el cable es 1000 N y si el cable hace un ángulo de 60 grados con la horizontal, entonces. ¿ Cuál es el componente vertical de la fuerza que levanta el automóvil?

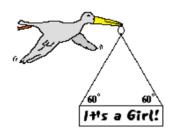
$$FY = F \sin 60$$

Sustituyendo tenemos:

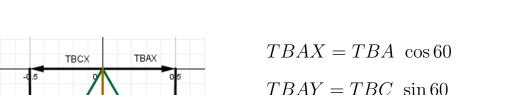

$$FY = 1000 \ N \ \sin 60 = 866.02 \ N$$

Conclusión: el componente vertical de la fuerza que levanta al automóvil es 866.02 N.

Para resolver el problema tenemos que dibujar principalmente un diagrama de cuerpo libre.


Problema 6.

Después de su entrega más reciente la infame cigüeña anuncia la buena noticia. Si el cartel tiene una masa de 10 kg, entonces ¿ Cuál es la fuerza de tensión en cada cable? Usa funciones trigonométricas y un croquis para ayudar en la solución.


Figura 4: Diagrama de cuerpo libre

Después haciendo uso de las funciones trigonométricas calculamos el componente vertical:

$$FX = F \cos 60$$

Paso 1.- Dibujar el diagrama de cuerpo Paso 3.- Resolver ecuaciones para lo libre.

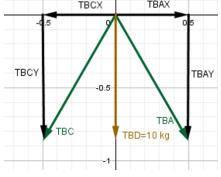


Figura 5: Diagrama de cuerpo libre

Paso 2.- Plantear ecuaciones de equilibrio.

$$\Sigma FX = 0$$

$$\Sigma FY = 0$$

Para el caso de x.

$$TBAX - TBCX = 0$$

Para el caso de y.

$$-TBCY - TBAY - TBD = 0$$

Luego:

$$TBCX = TBC = \frac{4}{5}$$

$$TBCY = TBC = \frac{3}{5}$$

$$TBD = W = (10kg) \left(9.81 \frac{m}{s^2} \right) = 98.1 \ N$$

Luego:

$$TBCX = TBC\left(\frac{4}{5}\right)$$

que se debe sustituir.

$$TBCY = TBC \left(\frac{3}{5}\right)$$

$$TBA \cos 60 - \frac{4}{5 \ TBC} = 0$$

$$-\frac{3}{5}TBC-TBC$$
sin 60 – 98,1 $N=0$

Despejamos TBC

$$\frac{4}{5}TBC = TBA \cos 60$$

$$TBC = \frac{5}{4}TBA \cos 60$$

Ahora sustituimos

$$-\frac{3}{5} \left(\frac{5}{4} TBA \cos 60 \right) - \left(\frac{5}{4} TBA \cos 60 \right) = 98.1 N$$

$$-\frac{3}{4}TBA$$
 cos 60 $-\frac{5}{4}TBA$ cos 60 = 98,1 N

$$-2 TBA \cos 60 = 98.1 N$$

$$TBA = \frac{98,1}{(-2 \cos 60)}$$

$$TBA = -98.1 \ N$$

Para obtener TBC

$$TBC = \frac{5}{4} (-98.1 \cos 60) = -61.31 N$$

Conclusión.-Al haber obtenido los valores de TBA y TBC se ha resuelto el problema.