-----------------------------------------------------------------------------------------------------------------------------------------------------

Notes

  1. [Bernhard] An online book about interpretable machine learning - mentioned on 07/12/2017: https://christophm.github.io/interpretable-ml-book/

-----------------------------------------------------------------------------------------------------------------------------------------------------

Previous Papers

2018

  1. [x] Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images \cite{zhang2017deep}
  2. [x] Dynamic Routing Between Capsules \cite{Sabour2017}Reddit
  3. [x] Attention Is All You Need \cite{vaswani2017attention}
  4. [x] Unsupervised End-to-end Learning for Deformable Medical Image Registration \cite{shan2017unsupervised}
  5. [x] Mask R-CNN \cite{he2017mask}
  6. [x] A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. \cite{George_2017}
  7. [x] ST-GAN: Spatial Transformer Generative Adversarial Networksfor Image Compositing  \cite{1803.01837}github 
  8. [x] Nonparametric Variational Auto-encoders for Hierarchical Representation Learning \cite{Goyal_2017}
  9. [x] Multi-task Self-Supervised Visual Learning \cite{Doersch_2017}
  10. [x] Born Again Neural Networks - distilling a teacher model to a student model with an identical architecture, the student outperforms the teacher (using a dense net) \cite{furlanelloborn}
  11. [x] DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction\cite{Yang_2018}
  12. [X\cite{convolutions}MR image reconstruction using the learned data distribution as prior  (Christian B. presented) \cite{1711.11386}

2017

  1. [x] CNN Fixations: An unraveling approach to visualize the discriminative image regions \cite{Mopuri2017}
  2. [x] Visualizing Deep Neural Network Decisions: Prediction Difference Analysis \cite{Zintgraf2017}
  3. [x] Soft Proposal Networks for Weakly Supervised Object Localization \cite{Zhu2017}
  4. [x] Self-supervised Learning for Spinal MRIs \cite{Jamaludin_2017}
  5. [x] Visual Feature Attribution using Wasserstein GANs \cite{1711.08998}
  6. [x] Non-local Neural Networks \cite{1711.07971} - facebookAI - Achieves best results in video classification, object segmentation and pose estimation -  Reddit 
  7. [x] Distilling a Neural Network Into a Soft Decision Tree \cite{1711.09784} - describes a way of using a trained neural net to create a type of soft decision tree that generalizes better than one learned directly from the training data - Reddit

-----------------------------------------------------------------------------------------------------------------------------------------------------