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Abstract

Parasites have a large impact on a host’s life-history evolution, individual behavior, and population dy-
namics. Recent models have suggested migratory recovery as a strategy to reduce disease prevalence, and
experimental work has shown that diseased fish prefer water temperatures that facilitate recovery and lower
transmission rates. However, current models ignore the behavioral coupling between social spread of dis-
ease, and social influence to movement. We form a model which couples disease transmission with a social
influence to movement decisions, and perform simulations to ask how environmental factors and transmission
rates influence transient group movement and disease prevalence. The model represents movement between
two habitats. The ‘breeding’ habitat has higher disease transmission rates, but is preferred by healthy in-
dividuals because it allows for breeding. The ‘recovery’ habitat is preferred by diseased individuals because
it has low transmission and high recovery rates, but does not allow breeding. An individual’s preferred
location depends on its disease state and on the motion of others around them via a social network. The
model demonstrates that social influence to movement can dramatically change the prevalence of disease as
well as the movement dynamics of a group. Current work seeks to test model predictions using experiments
with stickleback fish and common species of ectoparasites.

Introduction

Living in groups has both pros and cons. It is normally advantageous in terms of enhanced abilities
for predator detection and for finding food. However, an important negative consequence is that the
continuous close proximity to group mates can facilitate the spread of disease. The mechanism of “migratory
escape” may have evolved to mitigate spread of disease, if individuals move from a high-risk to a low-risk
environment in terms of infection spread (Hall et al., 2014; Johns and Shaw, 2015). For instance, seasonal
movement between high infection risk, low altitude winter grounds and low infection risk, high altitude
summer grounds allows red deer, Cervus elaphus, to reduce their exposure to Ixodes ricinus ticks (Qviller
et al., 2013; Mysterud et al., 2015). Further theoretical and empirical work has suggested that “migratory
recovery”, where movement between environmentally distinct habitats leads to recovery from infection, could
be an additional mechanism to reduce overall disease prevalence in a population (Shaw and Binning, 2016;
Daversa et al., 2018), and that the spatial distribution of hosts during transient phases influences disease
spread (Daversa et al., 2017). Other work has shown that individual location preferences change with
disease state (Mohammed et al., 2016). For example, infected individuals may move to warmer habitats that
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cause an increase in their surface or core body temperature to the detriment of the parasite, a phenomenon
known as “behavioral fever” (Covert and Reynolds, 1977; Kluger et al., 1975; Rakus et al., 2017; Reynolds
et al., 1976; Satinoff et al., 1976; Moyer and Wagenbach, 1995). This strategy is particularly effective in
ectotherms, which rely on their external environment to regulate internal temperature (Rakus et al., 2017).
Such preferences could facilitate movement decisions that aid in the recovery of infected individuals, and
lower overall disease prevalence.

The mechanisms of migratory escape, migratory recovery, and behavioral fever involve a sort of “spatial
escape”, where individuals move to an area that facilitates recovery. However, even though individuals may
have their own location preferences, migratory movement decisions are often made in a group setting (Berdahl
et al., 2018). Group movement decisions emerge as a result of both social and non-social information
use (Pérez-Escudero and de Polavieja, 2011). Models have suggested that only a small number of leaders
are needed to change the direction of the whole group (Guttal and Couzin, 2010; Torney et al., 2010; Pais
and Leonard, 2014). When preferences are conflicting, the group may compromise or split, depending on
the number of individuals and the degree of disagreement (Couzin et al., 2005b; Strandburg-Peshkin et al.,
2015).

There are there two ways that movement can affect disease prevalence. The first is moving to an area with
higher recovery rates, or escaping an area with high disease transfer rates. The second is escaping from other
diseased individuals in the population, who harbor the disease and may transfer it. Group fission/fusion may
a key mechanism to balance the trade-off between the benefits of staying together as a group, and the costs
due to increased disease transfer.

It is not known how social influence to movement affects the coupling of disease spread and migratory
movement. For example, in what conditions will an increase in epidemic spread be caused by an over-
reliance on social movement cues? Does the use of social and non-social information depend on disease
state? How do individuals balance the trade-off between the benefits of staying in a group, and the costs
associated with increased disease transfer?

To address these questions we form a model that couples disease transmission to movement decisions. The
model represents movement between two habitats: healthy individuals prefer the ‘breeding’ habitat, while
diseased individuals prefer the ‘recovery’ habitat. An individual’s movement depends both on its disease
state, as well on the motion of others around them via a social network. We model disease transfer by using
a network version of SIS model, and defining transfer rates depending on distance between individuals. We
use the model to ask how social influence to movement affects disease prevalence, depending on the disease
transfer and recovery rates in the environment.

We then investigate how a group may mitigate social spread of disease, by considering that healthy individuals
can detect diseased individuals, and that adjust their social movement based on the observed disease state
of others. We ask what conditions [motion rules?] predict an increase in disease prevalence, versus what is
necessary to lead to group splitting and fission dynamics, to negative effects of how social cues to movement
affect disease state [this sentence needs rewording]. We conclude by discussing these results in the context of
(sticklebacks-endo parasites), a model system for host-parasite interactions, and outline experimental tests
of the model’s predictions for social movement and disease transfer.

[to add: actual model predictions, when do it].

Must add references
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Results

We form a model that couples disease transmission with both non-social and social influences to move-
ment. In the model, individuals move between a breeding area and a recovery area (Figure 1).

Breeding area Recovery areaTransition
area

Figure 1: Model schematic. The model represents movement between a breeding area, which has high
disease transmission and low recovery rates, and a recovery area, which has low disease transmission and
high recovery rates.

To analyze the parameter dependence of the model, we consider four “disease transmission regimes”, where
both recovery and social transmission rate take on high or low values. A high recovery rate means that
typical recovery times are similar to to the time needed to move between areas, so that recovery is likely to
occur during migration. A high infection rate means that an epidemic can spread through the population
before individuals are able to move away from the group or to the recovery area. A low recovery rate means
that recovery is unlikely to occur during migration, and that an individual must spend a significant amount
of time in the recovery area in order to become healthy once again. A low infection rate means that if
individuals change their motion after infection, it is possible to move away from other groupmates before
infecting them. Using these definitions, we can define four different disease transfer regimes for each model:

1. High rates: High infection rate / High recovery rate
2. High recovery: Low infection rate / High recovery rate
3. High infection: High infection rate / Low recovery rate
4. Low rates: Low infection rate / Low recovery rate

Social influence to motion has a different effect on the fraction infected in each of these cases. With high
rates, there are transient epidemics that die quickly, because the infected recover quickly (Fig 2a). Because
infection and recovery happen quickly, the group most often stays together as a whole, which often consists
of both healthy and infected individuals, and (migratory recovery)

([JD: remember that you wrote summary on page of notebook with blue sticky note]])

In regime 2, low overall infection prevalence

in regime 3, oscillatory infections. There is an epidemic, then the group moves ‘together’ to the recovery
area. Then, move back as recover. At high social though, the group can never split apart, and as a
result, recovered individuals don’t leave infected individuals while in the recovery area, and then become
re-infected. This causes the whole group to essentially stay infected

in regime 4, also oscillatory (?)

The 1D model can capture the mechanisms of what is seen in regimes (3 - only 3??), but not others. This is
because the model does not allow realistic group fission. Without noise, there is a fixed threshold at which
an individual can break off from the group. In contrast, in the more realistic 2D model, there is randomness
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to individual motion, and so there is always a small probability that an individual will break off from the
group.

[[or, to address this, should I add noise to the 1D model? An easy way would be to add the noise, but still
enforce the positional limits of -1 and 1. Then wouldn’t have to deal with drift]]

The 1D model shows that when social weight increases, there can be “transient epidemics” due to social
influence to motion. For example, a newly infected individual has a conflicting preference of whether to
move to the recovery area or to remain near groupmates, and this causes it to remain by others until enough
have become infected that a sub-group reaches consensus to move together to the recovery area. . . . .Other
explanation of 1D model results. . . . (Figure 2).

Additionally we consider effect of a “reaction time offset”, between when an individual becomes infected,
and when their personal location preference changes. (Figure 2C).
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Figure 2: 1D model simulation results. (A) Time-dependent fraction infected with different values of
the social interaction parameter s. (B) Average fraction infected, and average number of neighbors, when
social interaction is increased. (C) Something that looks at the effect of have a “reaction offset”, i.e. a
difference between an individual becomes infected, and when their behavior changes. This could have a
negative offset, which means that you are infectious before your personal location preference changes (this
will increase disease prevalence). Or it could have a positive offset, which means that you change your
personal location preference before you become infectious (this is decrease disease prevalence).

We next use a 2D model with more realistic movement rules. Using these, we see that similarity with results
with 1D model, but also some differences because motion is realistic, and groups can undergo fission-fusion
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dynamics (Figure 3).
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Figure 3: 2D model simulation results. (A) Illustration of simulation configurations with no social
movement interactions, and with with social movement interactions. (B) Average fraction infected, and
other quantities, when social interactions vary.

With the 2D model, we ask, what if individuals have different social movement rules that depend on their
disease state? We consider the case where healthy individuals can detect infected individuals and respond
different to them by [[motion rule that end up changing]] (Figure A). When [[conditions]], the groups
separate into “infected” and “healthy” subgroups (Figure B), which decreases overall disease prevalence
(Figure C). In this case, also . . . (Figure C).

Discussion

Summary of model and results

Discussion topics go here!

Infection and social attraction

Our results suggest that social influences affect both disease prevalence and group movement dynamics.
However, infection can also change the degree of gregariousness demonstrated by an individual. For in-
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Figure 4: Social interactions that depend on disease state. (A) We consider social interactions rules
where [[description]]. (B) An example simulation configuration illustrates how fission-fusion movement may
separate sub-groups into healthy or infected. (C) The fraction infected decreases. . . another metric that
relates to subgroups.. plots that show these things somehow, after actually doing these simulations.

stance, an immune response triggered during infection can lead to sickness behaviours (Hart 1988): adaptive
behavioural changes in infected individuals that help combat infection. This includes anorexia, lethargy,
and reduced social interactions. It may be that the social attraction of sick individuals may be quite a bit
lower than in healthy, gregarious individuals. This reduced gregariousness has the benefit of reducing disease
spread within populations (See Shakhar and Shakhar 2015). Known as the “Eyam hypothesis”: sickness
behavior protects the social group of infected individuals by limiting their direct contacts, preventing them
from contaminating the environment, and broadcasting their health status. Kin selection promotes such
behaviors.

Alternatively,

References:

Hart, B.L. 1988 Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123-137.
(doi:https://doi.org/10.1016/S0149-7634(88)80004-6).

Shakhar, K. & Shakhar, G. 2015 Why Do We Feel Sick When Infected—Can Altruism Play a Role? PLoS
Biol 13, e1002276. (doi:10.1371/journal.pbio.1002276)

. . . discussion of systems where this is ecologically relevant. For example, stickleback, as shown in Fig-
ure 5. (or some other example).

Discuss, could have evolutionary simulation, for perhaps the social interaction parameters, and simulate to
ask what configurations evolve under different environmental pressures.
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Shallow

Deep

movement

Figure 5: Ecologically relevant model contexts. Schooling stickleback fish are a case where social
influence to motion is expected to impact the transmission of ecto-parasites (species name). In the lake,
the fish move between shallow waters, which are used as breeding areas and have higher parasite growth
and transmission rates due to the warmer summer temperatures, and deeper waters, which have cooler
temperatures and appear to inhibit parasite growth.

Concluding summary and direction of future work.

Methods

Environmental structure

We define three areas which are used to represent movement preferences and disease dynamics. Each of
the three areas has a length of 2L and is defined using the x-coordinate of position. The breeding area
spans −3L ≤ x ≤ L, has high disease transfer and low recovery rates, and is the preferred area for healthy
individuals. The transit area spans −L < x < L, and has spatially varying disease transfer and recovery
rates. The recovery area spans L ≤ x ≤ 3L, has low disease transfer and high recovery rates, and is the
preferred area for infected individuals. These three areas are showen in Fig 6A.

We define disease dynamics to vary spatially as defined by a function T (x) for transmission and R(x)
for recovery. Individuals can become infected either from the environment (background transmission) or
from contact with other individuals (direct transmission). We assume that both forms of transmission are
heightened in the breeding area and reduced elsewhere. In contrast, recovery is heightened in the recovery
area and reduced elsewhere. We assume that transmission and recovery rates are constant in the breeding
and recovery areas, and use a logistic function to describe how both rates change across the transit area:

T (x) =

 f(L), if − 3L ≤ x ≤ −L (breeding)
f(−x), if − L < x < L (transit)
f(−L), if L ≤ x ≤ 3L (recovery)

(1)

R(x) =

 f(−L), if − 3L ≤ x ≤ −L (breeding)
f(x), if − L < x < L (transit)
f(L), if L ≤ x ≤ 3L (recovery)

, (2)

where f(x) =
(
1 + e−x/a

)−1
is the logistic function with steepness determined by the parameter a. We

consider two different values of a, to represent larger (a = L/3) or smaller (a = L) changes in rates with
movement to the different areas. Fig 6B shows the functions T (x) and R(x) with these two different values.

Movement behavior

We use both a simplified 1D motion model as well as a more realistic 2D model to represent migratory
movement between areas. Each model incorporates social influence to movement, disease-dependent personal
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location preferences, and location-dependent disease transfer and recovery rates. An agent i has a disease
state hi = {0, 1}, with 0 representing susceptible (i.e. not infected) and 1 representing infected, and a
position xi (1D model) or ri = (xi, yi) (2D model).

Non-social location preferences

We define a function F (x, h) to represent personal location preferences that change with the x-coordinate of
position (x) and the individual’s infection status (h). A susceptible, i.e. healthy, individual (h = 0) prefers
the breeding area, while an infected individual (h = 1) prefers the recovery area. We define a function
F (x, h) which represents these disease-dependent location preferences by biasing an individual’s movement
in the x-direction when outside of the preferred area. We represent this with a piecewise constant form:

F (x, h) =

{
−H(x+ L), if h = 0
H(−x+ L), if h = 1

, (3)

where H(·) is the Heaviside step function. Thus healthy individuals have a movement bias to the left
whenever they are outside of the breeding area and infected individuals have a movement bias to the right
whenever they are outside of the recovery area. Fig 6C shows the function F (x, h).

1D model equation of motion

The motion of each agent is described with

dxi = dt

 κF (xi, hi)︸ ︷︷ ︸
location preference

+ s
∑
j

g (xj − xi)︸ ︷︷ ︸
social influence

 (4)

The first term represents non-social location preference, with κ as a weighting factor.

The second term represents social information, weighted by s and summed over all individuals. The function
g(·) represents that social influences to movement decrease in magnitude with distance, but that within a
range individuals adjust their movement towards others. We represent this mathematically with

g (xj − xi) = (xj − xi) exp

(
− (xj − xi)2

2x2
0

)
, (5)

where x0 is a length scale for how far social interactions extend in space. We use x0 = L/10 for the
simulations.

The 1D model represents motion in the transit area between the breeding and recovery areas, but does not
capture self-propelled movement or group motion within the the breeding or recovery areas. Additionally,
this model cannot represent the effects of having disease-dependent social movement preferences within a
given area. To overcome these limitations, we use the 2D model of motion as described below

2D model equation of motion

In the 2D model, susceptible agents in area 1, or infected agents in area 3, only move according to social
influences. When outside of the preferred area, an individual moves by weighting both the personal location
preference and social influences. To represent motion in a 2D space and allow for group fission-fusion
dynamics, we use a modified version of the zonal model of (Couzin et al., 2002; Ioannou et al., 2012b; Couzin
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et al., 2005a). An individual swims with a constant speed v, and turning dynamics are given by an equation
for angular velocity (Gautrais et al., 2008b):

dωi =
1

τ

v̂i ×

 κF (xi, hi)x̂︸ ︷︷ ︸
location preference

+ sd̂Z({hj , rj , v̂j})︸ ︷︷ ︸
social influence

− ω
 dt+ σωdW (t), (6)

where d̂Z is the desired motion direction from the zonal model, x̂ is a unit vector in the x-direction, σω
is the noise amplitude, and W (t) is a Wiener process, and an agent i has unit velocity vector v̂i, position
ri = (xi, yi), and disease state hi. As in Eq. 4, κ represents the strength of the non-social location preference,
and s the strength of social preferences. The non-social location preference depends only on an individual’s
disease state and x-coordinate of position, while social movement depends on the positions, orientations, and
disease states of an agents neighbors. Movement is in the range −3L ≤ x ≤ 3L and −Ly ≤ y ≤ Ly, with
hard boundaries in the x-direction and periodic boundaries in y.

The zonal model represents motion by considering social influence due to discrete ’zones’: an outer zone of
attraction, a middle zone of alignment, and an inner zone of repulsion. Eq. 6 is a reformulated version of
the zonal model in terms of effective torques; we use this in order to simplify how both non-social and social
influences combine to determine motion. The desired motion direction in the zonal model is determined
as follows: [could add this, or could leave out: how to get dz. include repulsion, attraction, alignment
directions, and also a ’blind spot’. This is the same as described in the other papers, so wouldn’t absolutely
need this though]. This model has three parameters: rr is the outer radius for the repulsion zone, rs is the
outer radius for the social zone which includes alignment and attraction, and θB defines the blind spot in
the back. Fig 6D illustrates these zones.

Eq. 6 is a form of the ”persistent-turning-walker” (PTW) model of motion (Gautrais et al., 2008a). We
choose parameter value by forming an approximate equivalence between the PTW formulation and the
discrete-time formulation of Ioannou et al. (2012a). There, a parameter p was used to weight the zonal
model social movement direction versus the current direction, and θmax to represent the maximum turning
angle in a given time step, with a value of dt = 0.1 used for the time step. To relate these to the social
coupling weight s in Eq. 6, consider the case where the zonal model causes turns to be the maximum value
θmax. If v̂i × d̂Z ≈ 1, then s ≈ pθmax/dt ≈ 1.6 radians/sec. Since typically v̂i × d̂Z < 1, we choose s = 2 for
approximately equivalent behavior. In the simulations we vary both s and κ.

For the noise amplitude, Ioannou et al. (2012a) added random angles at each time step drawn from a Gaussian
distribution with zero mean and standard deviation of approximately σm = 0.1 radians (5.7 degrees) at each
time step. Using the fluctuation-dissipation theorem and standard methods of stochastic simulation, we have
var(σωdW (t)) = σ2

ωdt = σ2
m. Plugging in dt = 0.1 and σm = 0.1 from Ioannou et al. (2012a), we obtain

σω =
√

(0.1) for equivalence.

We must also choose a value for τ , which represents the time scale for changes in angular velocity (or,
equivalently, the turning moment of inertia). In previous simulations of the zonal model, the equation was
first order, i.e. neglecting inertia. We therefore choose a small value of τ = 0.1 sec, which means that turns
occur on the order of timestep used by Ioannou et al. (2012a).

To define the zonal model parameters, we first set the constant movement speed to v = 0.02L. Using the
values from Ioannou et al. (2012a), we set the zonal radii to rr = 3.657v and rs = 6.857v, and additionally
use a blind spot of θB = 0, for simplicity.

In summary, parameter values are:

9



Parameter Value
s 2 (or a range)?
κ range (?)
τ 0.1 sec.

σω
√

0.1
v 0.02L
rr 3.657v
rs 6.857v
θB 0
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Figure 6: Model details. (A) Coordinate system and x-direction limits for the models. (B) Position-
dependent infection rates and recovery rates, showing the two different scaling parameters used. (C) Disease-
dependent personal location preference, showing arrows for direction of movement bias. (D) [update figure
to just use two zones, outer as r s] Illustration of the zonal model used for the 2D simulations, showing
the repulsion zone (within rr), alignment zone (between rr and ro), the attraction zone (between ro and ra),
and the angle defining the blind spot (θB).

Infection dynamics

We consider disease transfer and recovery rates that vary with position in the environment as defined by
the functions T (x) and R(x) above. We consider that disease transfer occurs between neighbors that are
close in space by setting a distance threshold. The distance threshold determines the connections of the time
dependent social adjacency matrix, Aij(t), which sets whether or not disease transmission can occur. For
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the 1D model, we use the same distance x0 from Eq. 5 to set the values of the adjacency matrix:

A1D
ij (t) =

{
1, if |xi(t)− xj(t)| ≤ x0

0, otherwise
(7)

For the 2D model, we use the radius of the alignment zone to set the cutoff distance for the social disease
transfer adjacency matrix:

A2D
ij (t) =

{
1, if |ri(t)− rj(t)| ≤ ra
0, otherwise

. (8)

To simulate disease transfer, we consider the SIS model on a network [ref]. Disease transfer between agents
is proportional to the rate β, there is a background rate of infection from the environment proportional to
the rate α, and recovery rate is proportional to γ. However, since infection and recovery rates also depend
on position, and social network weights, the following rules are used to simulate disease transfer during a
single timestep of length ∆t:

• If agent i is in state hi = 0 (susceptible):

– Neighbor j transmits disease with probability ∆tβT (xi)Aijhj

– Background (environment) infection occurs with probability ∆tαT (xi)

• If agent i is in state hi = 1 (infected):

– Recovery occurs with probability ∆tγR(xi)

This corresponds to the standard SIS model simulated on a network [REFS], modified to account for changes
in infection and recovery rates that vary with position.

[NOTE: add somewhere: Although we refer to area on the left as the ‘breeding area’, breeding and
mortality are not explicitly included in the model. ].
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