Econometrics Homework 1

Felicia Cowley¹

¹George Mason University

February 7, 2018

(Textbook Question 10 on page 55)

Let $\hat{\beta}_0$ and $\hat{\beta}_1$ be the OLS intercept and slope estimators, respectively, and let \overline{u} be the sample average of the errors (not the residuals!).

(i) Show that $\hat{\beta}_1$ can be written as $\hat{\beta}_1 = \beta_1 + \sum_{i=1}^n w_i u_i$, where $w_i = \frac{d_i}{SST_x}$ and $d_i = x_i - \overline{x}$.

The population model regression is $y_i = \beta_0 + \beta_1 x_i + u_i$ and the sample regression model is $y_i = \hat{\beta_0} + \hat{\beta_1} x_i + \hat{u_i}$

To find the estimate of $\hat{\beta}_1$ we solve below:

$$y_i = \beta_0 + \beta_1 x_i + u_i \qquad \qquad y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{u}_i$$

$$\hat{\beta_1} = \frac{Cov(y_i, x_i)}{Var(x_i)} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) y_i}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (\beta_0 + \beta_1 x_i + u_i)}{SST_x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})\beta_0 + \beta_1 \sum_{i=1}^n (x_i - \overline{x})x_i + \sum_{i=1}^n (x_i - \overline{x})u_i}{SST_x}$$

Also,
$$\Sigma_{i=1}^n(x_i - \overline{x}) = 0$$
 $\Sigma_{i=1}^n(x_i - \overline{x})x_i = \Sigma_{i=1}^n(x_i - \overline{x})(x_i - \overline{x}) = \Sigma_{i=1}^n(x_i - \overline{x})^2 = SST_x$

Which gives
$$\hat{\beta_1} = \frac{\sum_{i=1}^n (x_i - \overline{x})\beta_0 + \beta_1 \sum_{i=1}^n (x_i - \overline{x})x_i + \sum_{i=1}^n (x_i - \overline{x})u_i}{SST_x} = \frac{0 + \hat{\beta_1}SST_x + \sum_{i=1}^n (x_i - \overline{x})u_i}{SST_x}$$

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n (x_i - \overline{x})u_i}{SST_x} = \beta_1 + \sum_{i=1}^n w_i u_i$$

Since
$$w_i = \frac{d_i}{SST_x}$$
 and $d_i = x_i - \overline{x}$

(ii) Use part (i), along with $\sum_{i=1}^n w_i = 0$, to show that $\hat{\beta_1}$ and \overline{u} are uncorrelated. [Hint: You are being asked to show that $E[(\hat{\beta_1} - \beta_1) \cdot \overline{x}] = 0$.]

Since $\sum_{i=1}^n w_i = 0$ and $\hat{\beta}_1 = \beta_1 + \sum_{i=1}^n w_i u_i$, the correlation between $\hat{\beta}_1$ and \overline{u} can be shown by: $Corr(\hat{\beta}_1, \overline{u}) = \frac{Cov(\hat{\beta}_1, \overline{u})}{\sigma_{\beta_1} \sigma_{\overline{u}}} = \frac{E[[(\hat{\beta}_1 - \beta_1)(\overline{u} - \overline{u})]}{\sigma_{\beta_1} \sigma_{\overline{u}}}$

And since $\overline{\overline{u}} = \overline{u}$, this means that $E[\hat{\beta}_1 - \beta_1)(\overline{u} - \overline{\overline{u}})] = 0$ and the $Corr(\hat{\beta}_1, \overline{u}) = 0$

(iii) Show that $\hat{\beta_0}$ can be written as $\hat{\beta_0} = \beta_0 + \overline{u} - (\hat{\beta_1} - \beta_1)\overline{x}$.

$$y_i = \beta_0 + \beta_1 x_i + u_i$$
 and $y_i = \hat{\beta_0} + \hat{\beta_1} x_i + \hat{u_i}$

Taking the average gives $\overline{y} = \beta_0 + \beta_1 \overline{x} + \overline{u} = \hat{\beta_0} + \hat{\beta_1} \overline{x}$

$$\hat{\beta}_0 = \beta_0 + \beta_1 \overline{x} + \overline{u} - \hat{\beta}_1 \overline{x} = \beta_0 + \overline{u} - (\hat{\beta}_1 - \beta_1) \overline{x}$$

(iv) Use parts (ii) and (iii) to show that $Var(\hat{\beta}_0) = \frac{\sigma^2}{n} + \frac{(\sigma^2)(\overline{x})^2}{SST_x}$

Since
$$Corr(\hat{\beta}_1, \overline{u}) = E(\hat{\beta}_1 \overline{u}) = 0$$
 and $\hat{\beta}_0 = \beta_0 + \overline{u} - (\hat{\beta}_1 - \beta_1)\overline{x}$, the $Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_x}$

This means that
$$\hat{\beta_0} - \beta_0 = \overline{u} - (\hat{\beta_1} - \beta_1)\overline{x}$$

$$E(\hat{\beta}_0 - \beta_0)^2 = E[\overline{u} - (\hat{\beta}_1 - \beta_1)\overline{x}]^2$$

$$= E[\overline{u}^2 - 2\overline{u}(\hat{\beta}_1 - \beta_1)\overline{x} + ((\hat{\beta}_1 - \beta_1)\overline{x})^2]$$

$$= E(\overline{u}^2) - 2E[\overline{u}(\hat{\beta}_1)\overline{x} + 2\overline{x}E(\overline{u}) + \overline{x}^2E[(\hat{\beta}_1 - \beta_1)^2]$$

$$= \frac{\sigma^2}{n} - 0 + 0 + \overline{x}^2 Var(\hat{\beta}_1) = \frac{\sigma^2}{n} + \frac{\overline{x}^2 \sigma^2}{SST_x}$$

Thus
$$Var(\hat{\beta_0}) = E(\hat{\beta_0} - \beta_0)^2 = \frac{\sigma^2}{n} + \frac{\overline{x}^2 \sigma^2}{SST_x}$$

(v) Do the algebra to simplify the expression in part (iv) to equation (2.58) [Hint: $\frac{SST_x}{n} = n^{-1}\sum_{i=1}^{n}x_i^2 - (\overline{x})^2$.]

Because
$$\frac{SST_x}{n} = n^{-1} \sum_{i=1}^n x_i^2 - (\overline{x})^2$$
, $Var(\hat{\beta}_0) = \frac{\sigma^2}{n} + \frac{\sigma^2(\overline{x})^2}{SST_x} = \frac{\sigma^2}{n} + \frac{\sigma^2(\overline{x})^2}{\sum_{i=1}^n x_i^2 - n(\overline{x})^2}$

$$SST_x = \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n x_i^2 - 2\overline{x}\sum_{i=1}^n x_i + n\overline{x}^2$$

$$= \Sigma_{i=1}^n x_i^2 - 2 \frac{\Sigma_{i=1}^n x_i}{n} \Sigma_{i=1}^n x_i + n \big(\frac{\Sigma_{i=1}^n x_i}{n} \big)^2 = \Sigma_{i=1}^n x_i^2 - 2 \frac{(\Sigma_{i=1}^n x_i)^2}{n} + \frac{(\Sigma_{i=1}^n x_i)^2}{n}$$

$$= \sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n} = \sum_{i=1}^{n} x_i^2 - n(\overline{x})^2$$

The gives
$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} (x_i^2) - \frac{(\sum_{i=1}^{n} x_i)^2}{n} = \sum_{i=1}^{n} x_i^2 - n(\overline{x})^2$$

$$Var(\hat{\beta_0}) = \frac{\sigma^2}{n} + \frac{\sigma^2(\overline{x})^2}{SST_x} = \frac{\sigma^2}{n} + \frac{\sigma^2(\overline{x})^2}{\sum_{i=1}^n x_i^2 - n(\overline{x})^2}$$

$$= \frac{\sigma^2}{n} \left(1 + \frac{(\overline{x})^2}{\sum_{i=1}^n x_i^2 - n(\overline{x})^2} \right)$$

$$= \frac{\sigma^2}{n} \big(\frac{\sum_{i=1}^n x_i^2 - n(\overline{x})^2 + n(\overline{x})^2}{\sum_{i=1}^n x_i^2 - n(\overline{x})^2} \big) = \frac{\sigma^2 n^{-1} \sum_{i=1}^n x_i^2}{\sum_{i=1}^n s_i^2 - n(\overline{x})^2}$$

$$\Sigma_{i=1}^{n}(x_{i}-\overline{x})^{2}=\Sigma_{i=1}^{n}x_{i}^{2}-\frac{(\Sigma_{i=1}^{n}x_{i})^{2}}{n}=\Sigma_{i=1}^{n}x_{i}^{2}-n(\overline{x})^{2}$$

$$Var(\hat{\beta}_0) = \frac{\sigma^2 n^{-1} \sum_{i=1}^n x_i^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$