ECON 812 Homework 2

Felicia Cowley ${ }^{1}$
${ }^{1}$ George Mason University
February 6, 2018

1. Suppose 50% of all agents in an economy have $U=\ln x+\ln y$, and the other 50% have $U=2$ $\ln x+\ln y$. All agents start with one unit of x and one unit of y. Find the general equilibrium relative prices and allocations.

On the second page of the notes, we see that $\frac{p_{x}}{p_{y}}=\frac{\Sigma a_{i} \overline{y_{i}}}{\Sigma \overline{x_{i}}-\Sigma a_{i} \overline{x_{i}}}$. Additionally, to normalize, $a+b=1$ and there are 100 agents in total.

Using the formula, $\frac{p_{x}}{p_{y}}=\frac{(50)(.5)(1)+(50)\left(\frac{2}{3}\right)(1)}{(50)(.5)(1)+(50)\left(\frac{1}{3}\right)(1)}=1.4$ This means that each agent has $(1.4)(1)+(1)(1)=2.4$ units of income. The constant income fractions rule then demonstrates that the initial type of agent spends 50% of his or her income on each good while the latter type spends $2 / 3$ on x and $1 / 3$ on y .

The initial agent spends half of his or her income on good x and good y, therefore consuming $\frac{(.5)(2.4)}{1.4}=$.857 units of good x and $\frac{(.5)(2.4)}{1}=1.2$ units of good y. In essence, each initial agent sells .143 units of good x to attain .2 units of good y (in addition to the y he or she began with).

The latter agent type spends $2 / 3$ of his or her income on good x which is $(2.4)\left(\frac{2}{3}\right)=1.6$ units of good x and $1 / 3$ of his or her income on good y which is $(2.4)\left(\frac{1}{3}\right)=0.8$ units of good y. He or she consumes $\frac{1.6}{1.4}=1.143$ units of good x and $\frac{0.8}{1}=0.8$ units of good y . He or she sells 0.2 units of good y and buys 0.143 units of good x .
2. Re-do problem $\# 1$, assuming that the first type of agent starts with 2 units of x and 0 of y and the second type of agent starts with 2 units of y and 0 of x.
$\frac{p_{x}}{p_{y}}=\frac{(50)(.5)(0)+(50)\left(\frac{2}{3}\right)(2)}{(50)(.5)(2)+(50)\left(\frac{1}{3}\right)(0)}=\frac{4}{3} \quad$ Now the initial agent has $\frac{8}{3}$ units of income and the latter agent has 2 units of income.
The initial agent consumes $\frac{\left(\frac{8}{3}\right)(.5)}{\left(\frac{4}{3}\right)}=1$ unit of $\operatorname{good} \mathrm{x}$ and $\frac{\left(\frac{8}{3}\right)(.5)}{1}=\frac{4}{3}$ units of good y . He sells 1 unit of good x to attain $\frac{4}{3}$ units of good y.
The latter agent consumes $\frac{(2)\left(\frac{2}{3}\right)}{\frac{4}{3}}=1$ unit of good x and $\frac{\frac{2}{3}}{1}=\frac{2}{3}$ units of good y. She sells $\frac{4}{3}$ units of good y to attain 1 unit of good x .
3. Re-do problem $\# 1$, assuming that all agents have $U=x+y$. (Hint: At disequilibrium prices, agents want to consume only x or only y).

The price ration in this case would be $\frac{p_{x}}{p_{y}}=1$. This infers that if a good is cheaper than the other, all agents would desire to consume only the cheaper good and none of the other. Assuming that agents start
with one unit of good x and one unit of good y, each agent would only consume one unit of good x and one unit of good y .
4. Suppose you can redistribute x, but not y. Returning to problem $\# 1$, what exactly must you do to: (a) make the equilibrium utility of the first type of agents equal to .5 (b) give all agents of the second type the same utility, (c) and make type-2 agents' utility as high as possible conditional on (a)?

Letting the new initial agent type endowment be equal to \bar{x}, and the new latter agent type endowment $2-\bar{x}$. $\frac{p_{x}}{p_{y}}=\frac{(50)(.5)(1)+(50)\left(\frac{2}{3}\right)(1)}{(50)(.5)(\bar{x})+(50)\left(\frac{1}{3}\right)(2-\bar{x})}=\frac{7}{\bar{x}+4}$ This means that the initial type of agents each have an income of $\left(\frac{7}{\bar{x}+4}\right)(\bar{x})+1 \quad$ where they spend half of their income on good x and good y . This means that they consume $\frac{\left(\frac{7}{\bar{x}+4}\right)(\bar{x})+1}{(2) \frac{7}{\bar{x}+4}}=\frac{4 \bar{x}+2}{7}$ units of x and $\frac{\frac{7}{\bar{x}+4}(\bar{x})+1}{2}=\frac{4 \bar{x}+2}{\bar{x}+4}$ units of y . Plugging this into their utility function gives: $U=\ln \frac{4 \bar{x}+2}{7}+\ln \frac{4 \bar{x}+2}{\bar{x}+4}$.
Setting this to 0.5 and solving gives: $0.5=\ln \frac{4 \bar{x}+2}{7}+\ln \frac{4 \bar{x}+2}{\bar{x}+4} \quad\left(\frac{4 \bar{x}+2}{7}\right)\left(\frac{4 \bar{x}+2}{\bar{x}+4}\right)=$
$e^{0.5}$

$$
16 \overline{x^{2}}+4.46 \bar{x}-42.16=0
$$

$\bar{x}=1.49$
$\frac{p_{x}}{p_{y}}=\frac{7}{1.49+4}=1.275$ The income of the initial type of agents is equal to 2.9 which means that they consume $\frac{1.45}{1.275}=1.137$ units of x and $\frac{1.45}{1}=1.45$ units of y. In essence, after the redistrubtion of .49 units of x to the initial agents, they sell $1.49-1.137=.353$ units of x to buy .45 additional units of y .
The latter type of agents have .863 units of x and .55 units of y with utitlity equal to -.893 .

