Problemas sobre centroides

salma $^{\rm 1}$

 $^1 {\rm Instituto}$ Tecnológico Superior Zacatecas Occidente

June 14, 2019

9–1. Locate the center of mass of the homogeneous rod bent into the shape of a circular arc.

Prob. 9-1

$$x = \frac{\int_{-\frac{2}{3}\pi}^{\frac{2}{3}\pi} x \ dm}{\int_{-\frac{2}{3}\pi}^{\frac{2}{3}\pi} dm}$$
 Figure 1.
$$p = \frac{m}{l}$$

$$m = pL$$

$$dm = pdL$$

$$x = r\cos\theta$$

$$y = r\sin\theta$$

$$dL = rd\theta$$

$$x = \frac{r^2 \int_{-\frac{2}{3}\pi}^{\frac{2}{3}\pi} \cos\theta d\theta}{r \int_{-\frac{2}{3}\pi}^{\frac{2}{3}\pi} d\theta} = \frac{r\sin\theta \int_{-\frac{2}{3}\pi}^{\frac{2}{3}\pi}}{\theta \int_{-\frac{2}{3}\pi}^{\frac{2}{3}\pi}} = \frac{r[0.86 + 0.86]}{\frac{2}{3}\pi} = 300mm \left(\frac{1.732}{4.188}\right) = 124.06m$$

$$\begin{aligned} x &= r \cos \theta \\ y &= r sen \theta \\ dl &= r d \theta \\ w &= \left(\frac{0.5 lb}{ft}\right) \pi f t \\ x &= r^2 \frac{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta d \theta}{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \theta} = \frac{2r}{\pi} \end{aligned}$$

$$\Sigma f = 0 \qquad \qquad \Sigma m = 0$$
$$-\left(\frac{2r}{\pi}\right)(\pi Ib) + 48x = 0$$

9–2. Locate the center of gravity \bar{x} of the homogeneous rod bent in the form of a semicircular arc. The rod has a weight per unit length of 0.5 lb/ft. Also, determine the horizontal reaction at the smooth support B and the x and y components of reaction at the pin A.

Prob. 9-2

$$4ft = \left(\frac{2r}{\pi}\right)(\pi Ib)$$

$$Bx = 1Ib$$

$$Bx = Ax = 1Ib$$

Figure 1: This is a caption