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atmosphere field measurements. 22 

 Catalyzing numerical simulations and first-principles machine learning open up 23 

observing system simulation experiments to novel applications. 24 

 Use cases include natural climate solutions, emission inventory validation, urban air 25 

quality, and industry leak detection. 26 

mailto:smetzger@battelleecology.org


manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
2 

Abstract 27 

The observing system design of multi-disciplinary field measurements involves a variety of 28 

considerations on logistics, safety, and science objectives. Typically, this is done based on 29 

investigator intuition and designs of prior field measurements. However, there is potential for 30 

considerable increase in efficiency, safety, and scientific success by integrating numerical 31 

simulations in the design process. Here, we present a novel approach to observing system 32 

simulation experiments that aids surface-atmosphere synthesis at the interface of meso- and 33 

microscale meteorology. We used this approach to optimize the Chequamegon Heterogeneous 34 

Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 35 

(CHEESEHEAD19). 36 

During pre-field simulation experiments, we considered the placement of 20 eddy-covariance 37 

flux towers, operations for 72 hours of low-altitude flux aircraft measurements, and integration 38 

of various remote sensing data products. High-resolution Large Eddy Simulations generated a 39 

super-sample of virtual ground, airborne, and satellite observations to explore two specific 40 

design hypotheses. We then analyzed these virtual observations through Environmental 41 

Response Functions to yield an optimal aircraft flight strategy for augmenting a stratified random 42 

flux tower network in combination with satellite retrievals. 43 

We demonstrate how this novel approach doubled CHEESEHEAD19’s ability to explore energy 44 

balance closure and spatial patterning science objectives while substantially simplifying 45 

logistics. Owing to its extensibility, the approach lends itself to optimize observing system 46 

designs also for natural climate solutions, emission inventory validation, urban air quality, 47 

industry leak detection and multi-species applications, among other use cases. 48 

Plain Language Summary 49 

Computer models allow us to inform societal decisions in many areas of life. For example, they 50 

can predict severe weather or the fate of life-sustaining environmental resources such as water, 51 

food and air quality. In turn, these computer models are rooted in field measurements, which are 52 

the foundation of our understanding how the earth’s surface and atmosphere interact. However, 53 

the design of these field measurements is often limited to investigator intuition and prior 54 

examples. Here, we demonstrate how combining existing computer models and artificial 55 
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intelligence prior to installing any instrumentation can substantially enhance the design process. 56 

While an existing computer model simulates a number of possible measurement designs, 57 

artificial intelligence ranks each design for its ability to address project needs. We used this 58 

approach to determine the aircraft measurement strategy for a large field measurement project 59 

that links multiple science disciplines. This doubled the usefulness of the aircraft measurements 60 

for informing the next generation of surface-atmosphere computer models alongside tower and 61 

satellite measurements. The approach is extensible to optimize measurement designs also for 62 

natural climate solutions, emission inventory validation, urban air quality, and industry leak 63 

detection, among other applications. 64 

1 Introduction 65 

High-quality field data are the backbone of surface-atmosphere research. However, there are 66 

inevitable tradeoffs in any field measurement among cost, logistics, safety, and our ability to 67 

address science objectives. Most of the time, these tradeoffs are evaluated in a heuristic or 68 

haphazard approach, or at least with limited consideration of all possible options. Nevertheless, 69 

redundancy, experience, and good fortune usually save most field measurement Observing 70 

System Designs (OSDs) from failure. Inspired by Observing System Simulation Experiments 71 

(OSSEs) in the earth system sciences (Atlas et al., 2015; Hoffman & Atlas, 2016; Masutani et al., 72 

2010) we contemplated whether this process could be improved. In particular, we note modern 73 

advances in conducting virtual experiments within high-resolution numerical simulations (NSs) 74 

of atmospheric turbulence (e.g., Steinfeld et al., 2007). We envisioned that such NSs could yield 75 

OSSEs that increase ‘scientific return on funding investments’, more effectively address field 76 

measurement objectives, and minimize problems that arise from safety, logistics, and cost. 77 

Here, we derive a novel approach to OSSEs that aids surface-atmosphere synthesis at the 78 

interface of meso- and microscale meteorology. We then apply it to preparing field campaign 79 

resources for the “Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a 80 

High-density Extensive Array of Detectors 2019” (CHEESEHEAD19; Butterworth et al., 2020). 81 

At the time of this study, the CHEESEHEAD19 field measurement campaign was to be 82 

conducted in northern Wisconsin, United States of America, from June to October of 2019, with 83 

the overarching science objective to examine how the atmospheric boundary layer (ABL) 84 
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responds to spatial heterogeneity in the surface-atmospheric exchanges of heat and water. 85 

Further science objectives were to test whether resulting mesoscale atmospheric processes relate 86 

to the lack of energy balance closure frequently observed by eddy-covariance (EC) towers. 87 

Lastly, CHEESEHEAD19 sought to apply advanced analytics over a multi-scale set of 88 

observations to yield scale-aware, energy-balanced data products that help improve model 89 

representation of sub-grid processes. To that end, we wanted to harness the complementarity 90 

among various in-situ and remote-sensing measurement systems. 91 

However, the joint utility of these measurement systems for addressing the science objectives 92 

was not well characterized prior to the field measurement. Moreover, their joint utility is highly 93 

sensitive to the OSD including placement, and the resulting information overlap in space and 94 

time (Figure 1). Consequently, CHEESEHEAD19 scientific return hinged on our ability to 95 

merge information among the perspectives of ground-based, airborne and space-borne 96 

measurements, and numerical models. Plentiful data that are insufficiently connected to infer 97 

meaning risks data deluge rather than the next interdisciplinary breakthrough. While advances in 98 

post-field data assimilation aim to rectify limited and variable information overlap statistically 99 

(Williams et al., 2009), only the careful OSD of the field measurements themselves can treat 100 

their root cause. We thus sought an approach that empowers making informed OSD choices for 101 

surface-atmosphere field measurements in advance of the experiment. 102 

Simulation experiments involve asking what would happen in an imaginary scenario and trying 103 

to understand whether the predicted outcome is compatible with existing theory. This form of 104 

inquiry is not an invention of modern science, but can be traced back at least to the empirical 105 

thought experiments of ancient Greek philosophers (Brown & Fehige, 2019; Palmerino, 2018). 106 

Famously, Albert Einstein employed thought experiments for his theoretical generalizations, 107 

including in his works on special and general relativity (Norton, 1991). With the rise of NSs 108 

came the opportunity to increase the complexity and detail of thought experiments, such as how 109 

to design meteorological field measurements (e.g., Cortina & Calaf, 2017; Eddy, 1974; Gehrke et 110 

al., 2019). More frequently, however, these NSs were reserved for applications where real-world 111 

tests would have been impractical or impossible (e.g., Wiens et al., 2003). These NSs centered 112 

on prescribing and propagating a-priori knowledge, i.e. creating “data from knowledge”. As a 113 
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result, the findings often remained subject to strong methodological assumptions that could not 114 

necessarily be met by real-world applications. More recently, the advent of data-intensive 115 

scientific discovery promises to offset some of these limitations by providing computational 116 

facilities that aid the inference of “knowledge from data”, including machine learning (Hey et al., 117 

2009; Reichstein et al., 2019). We believe that ours is the first work that explicitly complements 118 

these paradigms of scientific knowledge creation for deriving surface-atmosphere OSDs at the 119 

interface of meso- and microscale meteorology. 120 

 121 

 122 

Figure 1. Space-time scope diagram for a surface-atmosphere synthesis observing system at the 123 

interface of meso- and microscale meteorology. The observing system consists of a hierarchy of 124 

ground-based (Ground), airborne (Air) and space-borne (Space) measurements, shown in relation 125 

to two principal approaches for scaling to an information continuum: pre-field observing system 126 

design and post-field data assimilation into earth system models. Modified after Metzger (2018). 127 

 128 
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Previous studies employed data-intensive scientific discovery for post-field OSD assessments 129 

(e.g., Chu et al., 2017; Koffi et al., 2013; Kumar et al., 2016; Loescher et al., 2014; Mahecha et 130 

al., 2017; Montanari et al., 2012; Villarreal et al., 2019). In comparison, one innovation of the 131 

presented approach is that it provides design information prior to testing OSDs in the field. To 132 

achieve this, we expanded on recent studies of atmospheric turbulence in Large Eddy 133 

Simulations (LES; Sühring et al., 2018; K. Xu et al., 2020). Specifically, we computationally 134 

simulated virtual observations over the CHEESEHEAD19 domain in decameter- and sub-second 135 

resolution. This “data from knowledge” feeds into a framework for data-intensive scientific 136 

discovery based on physics-guided Environmental Response Functions (ERFs; Metzger, 2018; 137 

Metzger, Junkermann, et al., 2013; K. Xu et al., 2017, 2018). The resulting explicitness promises 138 

unprecedented realism and process inference in comparison to existing pre-field OSSEs that 139 

leverage “knowledge from data” principles (Hargrove & Hoffman, 2004; Kaminski et al., 2012; 140 

Keller et al., 2008; Lauvaux et al., 2012; Lucas et al., 2015; J. Park & Kim, 2020; Sulkava et al., 141 

2011; L. Zhang & Pu, 2010; Ziehn et al., 2016). In the following, we derive this LES-ERF OSSE 142 

approach (in short “LES-ERF” hereafter) using the design of CHEESEHEAD19 airborne flux 143 

measurements as a specific application example. 144 

Airborne EC measurements have the particular benefit that they permit surface-atmosphere 145 

fluxes to be spatially resolved over a range of scales, from small, tower-sized flux footprints up 146 

to landscape scale. Thus, they build an important bridge among the differing scales of ground-147 

based and space-borne measurements (Figure 1). Moreover, these kinds of measurements have 148 

the particular advantage that they can capture dispersive fluxes resulting from mesoscale 149 

atmospheric processes, which we hypothesize to be a main reason for the long-standing energy 150 

balance closure problem of tower-based eddy-covariance measurements (Margairaz et al., 2020; 151 

Matthias Mauder et al., 2020). In comparison to other ground-based and space-borne 152 

measurements, aircraft can be deployed quite flexibly in space and time. They thus provide a key 153 

to maximize the joint scientific return of harnessing complementarity among various in-situ and 154 

remote-sensing measurement systems. However, airborne field campaigns are very costly and 155 

cannot be conducted continuously. Therefore, thorough planning of the flight strategy is of great 156 

importance. Previous large-scale field campaigns with similar airborne flux measurement 157 

objectives include the First ISLSCP (International Satellite Land Surface Climatology Project) 158 
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Field Experiment (FIFE; P. J. Sellers et al., 1988), the Boreal Ecosystem-Atmosphere Study 159 

(BOREAS; P. Sellers et al., 1995), the Northern Hemisphere Climate Processes Land-Surface 160 

Experiment (NOPEX; Halldin et al., 1999), the Lindenberg Inhomogeneous Terrain - Fluxes 161 

between Atmosphere and Surface: a Long-term Study (LITFASS-98; F. Beyrich et al., 2002) and 162 

LITFASS-2003 (Frank Beyrich & Mengelkamp, 2006), MAtter fluxes in Grasslands of Inner 163 

Mongolia as influenced by stocking rate (MAGIM; Butterbach-Bahl et al., 2011), ScaleX (Wolf 164 

et al., 2017) and others. In these campaigns the flight strategies were mostly based on experience 165 

and expert knowledge. Considerations included random and systematic errors (D. H. Lenschow 166 

et al., 1994) and the source area (or "footprint"; Kaharabata et al., 1997; Schuepp et al., 1990), 167 

sometimes supported by analyzing land-cover maps using Geographic Information Systems 168 

(Metzger, Junkermann, et al., 2013). However, measurement errors and source areas not only 169 

depend on the flight track itself but also vary with atmospheric conditions, such as stability, wind 170 

speed, and wind direction. Moreover, focusing solely on measurement errors can be misleading 171 

in relation to heterogeneity-induced signals and result in erroneous conclusions (Sühring & 172 

Raasch, 2013). 173 

The aim of this manuscript is to derive the theoretical background of LES-ERF, and to 174 

demonstrate its application to the CHEESEHEAD19 OSD with focus on the EC flight strategy. 175 

Specifically, in the following sections we test the study hypothesis that CHEESEHEAD19 176 

scientific return is sensitive to LES-ERF optimization. Two accompanying design hypotheses 177 

relate this sensitivity to the choice of flight patterns and flight sequence. Sect. 2 introduces the 178 

methodology beginning with CHEESEHEAD19 (Sect. 2.1), and then derives LES-ERF, the 179 

design hypotheses and candidate OSDs (Sects. 2.2–2.5). Sect. 3 presents the LES-ERF results, 180 

beginning with LES (Sect. 3.1) and ERF (Sect. 3.2) specifics, then evaluating the design 181 

hypotheses for each candidate OSD (Sect. 3.3), and providing CHEESEHEAD19 field campaign 182 

resources (Sect. 3.4). Sect. 4 discusses these LES-ERF results, in light of the CHEESEHEAD19 183 

OSD (Sect. 4.1), possible benefits for coordinated environmental observations in general 184 

(Sect. 4.2), and remaining challenges and future work (Sect. 4.3). Sect. 5 then summarizes our 185 

findings and provides an outlook. 186 
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2 Materials and methods 187 

2.1 CHEESEHEAD19 188 

The CHEESEHEAD19 study (Butterworth et al., 2020) was to be comprised of a four-month field 189 

measurement campaign to investigate how land surface heterogeneity influences energy balance 190 

closure. The energy balance closure problem refers to the situation, common in EC measurements, 191 

whereby downward energy from radiation and ground heat flux exceeds the measured upward 192 

energy from sensible and latent heat fluxes (Foken et al., 2011; Matthias Mauder et al., 2020). 193 

Previous studies have indicated that heterogeneity does impact energy balance (Stoy et al., 2013; 194 

Z. Xu et al., 2016). The CHEESEHEAD19 project proposed to evaluate the hypothesis that 195 

mesoscale features, driven by surface heterogeneity, are an important cause of energy balance non-196 

closure (Charuchittipan et al., 2014; Foken et al., 2011; Gao et al., 2016; M. Mauder, Jegede, et 197 

al., 2007). 198 

Due to a persistent mismatch between the scales of observations and models, the spatial and 199 

temporal scaling of surface fluxes is essential for evaluating theories on what happens within the 200 

sub-grid of atmospheric models, and how those feed back onto larger scale dynamics. Therefore, 201 

an additional science objective of the project was to use the unique, multi-scale set of observations 202 

to improve model representation of sub-grid processes and to assess the performance of ERFs for 203 

estimating the ‘flux in a box’ from the domain volume (Metzger, 2018; K. Xu et al., 2018). 204 

The field measurement campaign was to be conducted within a 10 × 10 km domain of 205 

heterogeneous forest in northern Wisconsin, USA. It included patches of homogenous and mixed 206 

forests of evergreen, hardwood, and softwood deciduous trees, as well as grasses, wetlands, 207 

streams, and lakes with a characteristic surface length scale of 411±88 m (K. Xu et al., 2017). The 208 

domain was relatively flat, ranging from 455 m ASL in southwest to 500 m ASL in the northeast. 209 

Previous years’ data from the study area showed that the summer months are characterized by light 210 

surface winds (typically < 5 m s−1) coming predominately from the western hemisphere (180 – 211 

360º) and daytime ABL heights ranging from 0.5 to 2.5 km above ground (mean of 1.5 km).  212 

To measure fluxes (momentum, sensible heat, latent heat, CO2) across the domain, 20 above-213 

canopy EC towers were proposed to be deployed over a range of vegetation types (Figure 2). They 214 
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would measure all components of the energy balance, including net radiation, sensible and latent 215 

heat fluxes, and ground heat flux. The majority of towers were expected to be instrumented at 3 m 216 

‒ 32 m above ground, equaling 3 m ‒ 15 m above the canopy depending on land cover. The 217 

exception would be the tall tower at the center of the domain which is an existing AmeriFlux 218 

supersite (US-PFa; A. Desai, 1996 - ) that has been measuring fluxes at 30 m, 122 m, and 396 m 219 

above ground for the past 26 years (1995 - 2020; A. R. Desai et al., 2015). 220 

 221 

 222 

Figure 2. Set of candidate locations for EC towers, ABL measurements and UWKA candidate 223 

flight tracks (west-east pattern) with respect to the 10 × 10 km CHEESEHEAD19 study domain 224 

(black box; image: Google Earth). For a given flight track the UWKA would first fly outbound at 225 

400 m above ground (red arrows) and return at 100 m above ground (blue arrows). 226 

 227 

The project also proposed to deploy a suite of remote sensing instruments (lidar, radar, sodar, 228 

ceilometers, interferometers) for measuring the mesoscale atmospheric environment (profiles of 229 

wind, H2O, temperature, aerosols, ABL height). Aircraft and space-borne remote sensing would 230 

be used to map surface characteristics that will be used for the data-driven scaling methods. This 231 

would include airborne hyperspectral imaging of the land surface properties. Additionally, a land 232 

surface temperature product was planned to be developed for the domain from a multi-sensor 233 
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fusion of in situ thermal drone and infrared camera imagery, ECOSTRESS, Landsat, VIIRS and/or 234 

GOES (e.g., P. Wu et al., 2013). 235 

Aircraft measurements would be used to link the differing scales of ground-based and space-borne 236 

observations over the domain. Airborne EC fluxes (momentum, sensible heat, latent heat, CO2) 237 

were to be measured with the University of Wyoming King Air (UWKA) during 24 research flights. 238 

The UWKA would also deploy an upward-pointing cloud lidar for estimating ABL height, and a 239 

downward pointing Raman lidar for providing a three-dimensional representation of air 240 

temperature and water vapor over the domain (D. Wu et al., 2016). During each research flight the 241 

UWKA would fly along 11 flight tracks (Figure 2). For a given flight track the UWKA would first 242 

fly outbound at 400 m above ground (Figure 2 red arrows) with emphasis on the lidar ABL 243 

observations. This arrangement would also allow the crew to visually ensure flight safety for the 244 

immediate return at 100 m above ground (Figure 2 blue arrows) with emphasis on the EC surface 245 

flux observations. Owing to the CHEESEHEAD19 science objectives we will focus on the 100 m 246 

EC surface flux flights in the following sections. A more complete description of the instruments 247 

deployed during CHEESEHEAD19 can be found in Butterworth et al. (2020). 248 

2.2 LES-ERF observing system simulation experiment 249 

Virtual atmospheres emulated in LES provide a controlled environment uniquely suited to 250 

disentangle surface-atmosphere feedbacks (e.g., Avissar & Schmidt, 1998; Kanda et al., 2004; 251 

Margairaz et al., 2020; Sühring et al., 2018; K. Xu et al., 2020). Our work on LES-ERF extends 252 

upon such previous use cases by simulating and analyzing candidate OSDs for real-world 253 

measurements in such virtual atmospheres. 254 

LES-ERF employs value engineering principles (e.g., R. Park, 1998; Tohidi, 2011; Younker, 255 

2003) to maximize the return on real-world measurement investments for addressing science 256 

objectives across traditional disciplinary boundaries. So long as we consider a single discipline, 257 

existing parameterizations often provide sufficient constraints to ensure meeting basic 258 

assumptions. For example, consider determining the height of an EC flux tower measurement as 259 

a function of roughness sublayer effects (e.g., Foken, 2017; Munger et al., 2012), atmospheric 260 

blending (e.g., Mahrt, 1996; Mason, 1988) and target source area (e.g., Chen et al., 2011; 261 
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Schmid, 1997). However, CHEESEHEAD19 relies on harnessing complementarity across 262 

disciplines, including ground-based, airborne, and space-borne measurements. These 263 

measurements operate on principally different space and time scales (Figure 1), so that scientific 264 

return hinges on our ability to join information not only across disciplines, but also across scales. 265 

For example, the spatial context of each measurement is a function of its horizontal and vertical 266 

placement, thus providing a mechanism to maximize information overlap. Yet, optimizing each 267 

measurement’s utility for joint scientific inquiry is beyond the scope of discipline-specific 268 

parameterizations. Here, we propose the extensible LES-ERF approach that explicitly simulates 269 

the joint scientific return in response to different candidate OSDs for addressing user-defined 270 

design hypotheses. 271 

In this study, we apply LES-ERF to derive an airborne EC flux flight strategy that augments a 272 

network of EC flux towers for optimally addressing CHEESEHEAD19 science objectives: 273 

relating surface-atmosphere feedbacks over a 10 × 10 km study domain to energy balance 274 

closure and space-time scaling (Sect. 2.1). A preconceived network of 20 continuously operating 275 

EC flux towers form CHEESEHEAD19’s backbone for addressing these science objectives 276 

(Figure 2). Tower placement within the study domain followed a stratified random pattern, 277 

taking into account practical considerations including distance to road, suitable gaps in trees for a 278 

tower, USFS-owned land, etc. Individual towers were an average of 1.4 km from their nearest 279 

neighboring tower, and an average of 3.5 km from the tall tower. Here, we focus on a strategy for 280 

airborne EC flux measurements because they offer the greatest potential but also the greatest 281 

risk: (i) they are central to linking the different scales of ground-based and space-borne 282 

observations (Figure 1); (ii) their flexibility provides an accessible mechanism to maximize joint 283 

scientific return, and; (iii) their flight safety and cost warrant careful planning. 284 

LES-ERF principally consists of three modules: (i) joining information across disciplines and 285 

measurements in ERFs, (ii) generating virtual measurements, e.g. in LES, and (iii) benchmarking 286 

candidate OSDs (Figure 3). ERFs augment expensive and thus sparse response observations 287 

(e.g., from tower and airborne EC) with inexpensive, abundant biophysical driver observations 288 

(e.g., from meteorological stations and satellites; Figure 3a). High-rate time-frequency 289 

decomposition and source area modeling facilitate mathematically rigorous data overlays among 290 
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these response and driver observations at minute- and decameter-scale. Machine learning then 291 

extracts a driver-response process model from the resulting space- and time-aligned dataset. 292 

Ultimately, this driver-response process model complements the properties of response and 293 

driver observations into a response data product. In the present example, the response data 294 

products are decameter-scale sensible heat flux maps, projected explicitly in space and time 295 

across the study domain. Sect. 2.5 provides specific implementation details for this module. To 296 

obtain virtual measurements ahead of the actual field measurement campaign, we used LES to 297 

create virtual atmospheres over the CHEESEHEAD19 domain for different synoptic conditions 298 

(Figure 3b). We then super-sampled these virtual atmospheres as observed by different yet 299 

simultaneous candidate OSDs. Sect. 2.4 details the specific implementation of this module. Each 300 

candidate OSD resulted in a separate set of virtual observations which we independently 301 

processed through the ERFs. Finally, we benchmarked each candidate OSD by comparing the 302 

flux maps that ERF reconstructed from the virtual observations alone to the original LES surface 303 

flux forcings (Figure 3c). To judge the ability to reproduce the LES reference we used three 304 

optimality criteria directly related to the CHEESEHEAD19 science objectives, each ranging 0‒305 

100%: 306 

(CR1) Flux map spatial coverage, i.e. the percentage of grid cells across the study domain that 307 

ERF was able to reconstruct.  308 

(CR2) Energy balance ratio; 309 

𝐸𝐵𝑅 =
〈F𝐻,𝐸𝑅𝐹〉+〈F𝐿𝐸,𝐸𝑅𝐹〉

〈F𝐻,𝐿𝐸𝑆〉+〈F𝐿𝐸,𝐿𝐸𝑆〉
; (1) 

with angle brackets indicating the horizontal average over all grid cells in the study domain, 310 

and FH and FLE the sensible and latent heat flux, respectively.  311 

(CR3) Spatial patterning from point-wise Pearson correlation between the ERF reconstructed 312 

flux maps and the corresponding LES forcings. 313 

We then used the arithmetic mean and standard deviation to aggregate CR1‒CR3 across flight 314 

patterns, flight sequences, and ultimately among themselves into a single score (Sect. 3.3). 315 
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 316 

 317 

Figure 3. (a) Environmental Response Functions relate tower and airborne eddy-covariance flux 318 

‘responses’ at very high space-time resolution to meteorological and surface drivers from 319 

ground-based, airborne and space-borne measurements. We then use the extracted relationships 320 

to reconstruct fluxes explicitly across the study domain. (b) To simulate different candidate 321 

OSDs ahead of the actual field measurement campaign, we used LES to obtain observations in 322 

virtual atmospheres over the CHEESEHEAD19 domain. (c): We then benchmarked the different 323 

OSD candidates against their ability to reproduce the LES reference in the form of flux grids that 324 

ERF reconstructed from the virtual observations alone. Sect. 2.2 provides additional detail. 325 

Modified after Butterworth et al. (2020), copyright (2020), with permission from the American 326 

Meteorological Society to reuse under the CC BY 4.0 license 327 

(https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/cc-by-4.0). 328 

 329 
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2.3 Design hypotheses and candidate observing system designs 330 

We used LES-ERF to determine the sensitivity of the optimality criteria in Sect. 2.2 in response 331 

to two specific design hypotheses. These design hypotheses define the trade space between 332 

CHEESEHEAD19 science objectives, flight time constraints, and straightforward flight 333 

operation. Related to flight pattern, we hypothesize that (H1) it is critical for airborne EC to 334 

measure perpendicular to the prevailing wind (e.g., Petty, 2020). And related to flight sequence, 335 

we hypothesize that (H2) within the flight time of a single research flight, it is more informative 336 

to fly a finely spaced pattern once compared to repeating a coarsely spaced pattern multiple 337 

times. To explore H1 and H2 we created candidate OSDs in an LES (Sect. 2.4), consisting of a 338 

virtual EC flux tower network in combination with virtual airborne EC flight patterns. 339 

The virtual EC tower network formed the backbone of each candidate OSD, and its horizontal 340 

distribution corresponded to the CHEESEHEAD19 stratified random grid pattern. Nineteen 341 

virtual towers performed EC time-series measurements at 49 m above ground, i.e. 26±13 m 342 

higher compared to the real towers. The virtual AmeriFlux supersite tower at the center of the 343 

study domain measured at 49 m, 112 m, and 371 m above ground, i.e. −6±17 m lower compared 344 

to the real tower. These choices were a compromise among realism, bounding LES 345 

computational expense (10 m vertical resolution), and keeping the LES sub-grid fluxes 346 

acceptably small (<1%) as suggested by Schröter et al. (2000), which will not be captured by the 347 

virtual EC flux computation. We analyzed 2 h of data for each of the 22 virtual tower-level 348 

combinations, or 44 hours in total. 349 

The virtual aircraft conducted EC space-series measurements along grid flight patterns at 100 m 350 

above ground, identical to the measurement height proposed for the real aircraft. The grid 351 

consisted of 11 flight tracks each 25 km long, including 6 parallel flight tracks 2 km horizontally 352 

spaced from each other, and 5 diagonal flight tracks in between (Figure 2 blue arrows). To create 353 

the dataset for assessing H1 we formed the virtual flight patterns by letting multiple aircraft fly 354 

simultaneous grids along four different azimuth angles of the parallel tracks: east-west (E-W), 355 

north-south (N-S), southwest-northeast (SW-NE), and south-southwest-north-northeast (SSW-356 

NNE). Here, the term flight pattern refers to a set of georeferenced waypoints. To assess H2 we 357 

further considered three permutations of the flight sequence, i.e. the order in which the waypoints 358 
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of a given pattern are flown. (i) Alternating refers to flying a parallel track, then the downwind 359 

diagonal track, then the downwind parallel track, and so forth. (ii) Outbound refers to first 360 

completing all parallel tracks in downwind order, then flying back to the first parallel track and 361 

completing all diagonal tracks in downwind order. (iii) Return refers to first completing all 362 

parallel tracks in downwind order and then completing all diagonal tracks in upwind (return) 363 

order. To summarize, the virtual airborne EC dataset consisted of 3 flight sequences × 4 flight 364 

patterns × 11 flight tracks, or a total of 132 analyzed flight tracks spanning 3,300 km of virtual 365 

airborne EC data. 366 

Based on this super-sample we evaluated 13 candidate OSDs. Applying LES-ERF to 44 site-367 

hours of data from the virtual EC tower network alone provided the baseline OSD. Combining 368 

data from the virtual EC tower network with one of the 3 flight sequences × 4 flight patterns = 12 369 

airborne EC combinations provided 12 alternative OSDs. Each of the alternative OSDs consisted 370 

of 44 site-hours virtual tower EC data and 11 flight tracks × 25 km = 275 km virtual airborne EC 371 

data. This configuration allows us to evaluate the change in the optimality criteria (Sect. 2.2) for 372 

each of the 12 joint tower and aircraft alternative OSDs relative to the tower-only baseline OSD. 373 

2.4 Large Eddy Simulations 374 

We used the Parallelized LES Model PALM (Maronga et al., 2020; Maronga et al., 2015), 375 

revision 4007 to simulate the atmosphere over the CHEESEHEAD19 domain. PALM solves the 376 

non-hydrostatic incompressible Boussinesq-approximated equations. We used the turbulent 377 

kinetic energy scheme of James W. Deardorff (1980) for the sub-grid model, a fifth-order 378 

scheme (Wicker & Skamarock, 2002) to discretize the advection terms, and a third-order Runge–379 

Kutta scheme by Williamson (1980) for the time integration. 380 

The aim of the simulation was to optimize OSDs for the upcoming field measurement campaign, 381 

meaning that the surface and atmospheric conditions were unknown. Hence, we simulated a day 382 

with a well-developed summertime continental ABL on 2011-08-12, which is a typical situation 383 

for that region during the scheduled field measurement period. We considered the model surface 384 

to be flat, and as surface forcing we prescribe time-dependent, heterogeneous sensible and latent 385 

heat flux grids that Metzger, Xu, et al. (2013) have previously determined for this day using 386 
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ERF. In an intermediary step we downscaled the original heat flux grids from 100 m to 25 m 387 

horizontal grid spacing and from 1 hour to LES time step, and filled data gaps with the 388 

horizontally averaged flux. This approach provides a straightforward surface flux benchmark for 389 

evaluating LES-ERF results, and forgoes the extensive data requirements of a coupled land 390 

surface model that would be difficult to fulfill prior to the actual field measurements. We then 391 

applied Monin–Obukhov similarity theory locally between the surface and the first vertical grid 392 

level as surface boundary condition for the momentum equations. During the pre-field stage, 393 

information on forest size and patch distribution was insufficient to use a plant-canopy model for 394 

reliably describing momentum drag. Hence, we set a horizontally homogeneous roughness 395 

length of 2.0 m in the simulations, because significant parts of the measurement site and its 396 

surroundings consist of forests. We then applied cyclic conditions at the lateral boundaries, and 397 

provided initial vertical profiles of the horizontal wind components, potential temperature and 398 

water vapor mixing ratio from nearby radiosonde observations (Green Bay Observations, Station 399 

ID 72645; ~100 km to the south east of the study domain). We assumed the observed westerly 400 

wind within the free-atmosphere to be in geostrophic equilibrium and steady state, and thus 401 

prescribed vertically constant profiles of the geostrophic wind components. 402 

With this setup, we simulated a 30 × 30 × 3 km3 domain in x-, y-, and z-direction, respectively, 403 

centered over the 10 × 10 km CHEESEHEAD19 domain. The grid spacing was 25 m in the 404 

horizontal directions and 10 m in the vertical direction. The simulation ran for five hours (0700 ‒ 405 

1200 CST), of which the first three hours were model spin-up time (0700 ‒ 1000 CST). During 406 

the final two hours (1000 ‒ 1200 CST) we took virtual tower and aircraft measurements. At each 407 

virtual EC tower location, a virtual sensor at 49 m above ground sampled time series of potential 408 

temperature, mixing ratio, and vertical wind at the LES time step of 0.4 s. For each aircraft 409 

measurement, a similar virtual sensor moved along a predefined flight track at 100 m above 410 

ground with at a ground speed of 82 m s−1. 411 

2.5 Environmental Response Functions 412 

ERF incorporates spectral averaging, source area modeling, and machine-learning-based space-413 

time explicit ensembling of environmental observations (Metzger, Junkermann, et al., 2013). 414 

Here we used ERF to reproduce the LES surface flux forcing from virtual EC tower, EC aircraft, 415 
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and remote sensing observations (e.g., Serafimovich et al., 2018; K. Xu et al., 2017). These flux 416 

maps comply with observational assumptions that are not typically met from EC measurements 417 

alone, such as incorporation of mesoscale flows and spatial representativeness for the 10 × 10 km 418 

CHEESEHEAD19 target domain (Metzger, 2018; K. Xu et al., 2018; K. Xu et al., 2020). 419 

ERF commenced with the high-rate time-frequency decomposed computation of the sensible and 420 

latent heat flux responses in the atmosphere. This step is based on the Morlet Wavelet, while 421 

assuming constant ambient pressure in the LES. Spectral averaging over the Wavelet cross-422 

scalograms facilitated high temporal (tower: 1 minute) and spatial (aircraft: 100 m) resolution of 423 

the resulting fluxes (M. Mauder, Desjardins, et al., 2007). To ensure that tower and aircraft 424 

fluxes are comparable in their inclusion of long-wave mesoscale flows we applied a joint 425 

rectangular cutoff. The aircraft data limited the long-wave transport scales, with the 25 km flight 426 

tracks equating to a maximum transport scale of ~17 km expressible by the Wavelet cross-427 

scalograms. We then applied Taylor’s hypothesis (Taylor, 1915) with an average wind speed of 428 

3‒5 ms−1 to derive a corresponding tower cutoff scale of ~1 h for the tower. We time-matched 429 

the sensible and latent heat flux responses with the virtual observations of meteorological drivers 430 

consisting of potential temperature, water vapor dry mole fraction from mixing ratio, and relative 431 

measurement height in the ABL calculated from the potential temperature profile. 432 

Next, we used source area modeling (Kljun et al., 2004; Metzger et al., 2012) to quantify the 433 

source area contributions to each 1 min tower and 100 m aircraft flux observation. The source 434 

area weights provided a linkage between the sensible and latent heat flux responses in the 435 

atmosphere and their spatially resolved drivers at the LES surface (available energy as a proxy 436 

for net radiation) and in the first vertical LES layer (land surface temperature and moisture as a 437 

proxy for remote-sensing observations). For simplicity, we used averages over the 2 h 438 

observation period for all spatially resolved drivers. The results are space- and time-aligned 439 

datasets consisting of the sensible and latent heat flux responses and their meteorological drivers 440 

in the LES atmosphere, and their spatially resolved drivers near the LES surface. The space-time 441 

aligned dataset for the baseline OSD (tower-only) thus consisted of 22 virtual tower-level 442 

combinations with 2 h of data each at 1 min output resolution = 2,640 observations. The space-443 

time aligned dataset for each of the 12 alternative OSDs (tower + aircraft) additionally consisted 444 
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of 11 flight tracks with 25 km data each at 100 m output resolution = 2750 observations. This is 445 

the first application of ERF to combine flux response information across platforms, here flux 446 

tower and flux aircraft. 447 

We then used boosted regression tree (BRT) machine learning to mine the information contained 448 

in the space-time aligned datasets. The results were individual ERF process models for each 449 

OSD, separately for the sensible and latent heat flux responses as a function of their 450 

meteorological and surface drivers. Overall, we built the driver-response model structure in 451 

accordance with first principles: an energy source, from which fluxes result in accordance to 452 

Fick’s law of (turbulent) diffusion along temperature and water vapor gradients, modulated with 453 

distance from the exchange surface. For example, we expressed the sensible heat flux response 454 

as a space-time function of the vertical temperature gradient. BRT then solved for the turbulent 455 

diffusion coefficient as a space-time function of available energy, modulated by vertical flux 456 

divergence and the vertical humidity gradient. 457 

In the final step we projected the space-time explicit heat flux response maps that the ERF 458 

process model yields when provided the full complement of space-time explicit drivers. 459 

Specifically, we provided the spatially distributed land surface temperature and moisture fields, 460 

the 2 h space-time median available energy across the 30 × 30 km domain, and the 2 h median 461 

meteorological drivers across all 20 virtual towers measuring at 49 m. This essentially equates to 462 

substituting the spatial information in the source areas with the distributed spatial information of 463 

land surface temperature and moisture fields akin to remote sensing. While it would have been 464 

possible to resolve the meteorological drivers temporally and hence also the resulting heat flux 465 

maps, we used the 2 h aggregates to streamline the overall analysis. We also limited the ERF 466 

projection to interpolate but not extrapolate outputs, i.e. to only populate grid cells with driver 467 

combinations in the range of the virtual measurements. By doing so, the resulting data coverage 468 

lets us directly estimate how well we sampled the domain for upscaling. In total, we trained and 469 

projected 78 ERF process models, consisting of two heat fluxes – sensible and latent heat – and 470 

13 OSDs with 3 replicates each to constrain BRT tolerances. 471 
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3 Results 472 

3.1 LES virtual experiments 473 

As described in Sect. 2.4, the simulations were forced using ERF derived surface sensible and 474 

latent heat fluxes across the domain. Figure 4 shows the prescribed surface sensible and latent 475 

heat fluxes at different points in time which were used as lower boundary condition for the LES. 476 

The hourly input fluxes were interpolated in time to the current LES time step. Surface 477 

heterogeneities with distinct patches in the surface sensible and latent heat flux are visible at 478 

multiple scales that vary in time and among the latent and sensible fluxes as well. Distinct 479 

surface heterogeneity patches are maintained over the entire simulation period, representing 480 

particular landscape pattern within the field measurement site. 481 

 482 

  483 

Figure 4. Time-sequence of (a) – (c) the spatially heterogeneous surface sensible heat flux and 484 

(d) – (f) latent heat flux prescribed as LES lower boundary conditions. Superimposed red dots 485 

indicate candidate EC tower locations, alongside UWKA candidate flight tracks (west-east 486 

pattern). 487 
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 488 

Figure 5 shows the domain-average initial and time-dependent vertical profiles of potential 489 

temperature, water vapor mixing ratio and wind speed. These explain the virtual setup and 490 

provide an overview of the ABL structure: The model was initialized with the early morning 491 

profiles of potential temperature and mixing ratio, and let to develop its own equilibrium for this 492 

design case. The profile of potential temperature indicates a vertically well mixed ABL which 493 

heats up during the course of the day. Due to the strong capping inversion the ABL grows only 494 

slowly and reaches a height of about 400 m around noon, which is relatively low for a 495 

summertime convective ABL. We discuss this in more detail in Sect. 4. The mixing ratio within 496 

the ABL also increases during the simulation due to the surface latent heat flux as well as due to 497 

entrainment of moist air from the above-lying free-atmosphere, which exhibits higher values of 498 

mixing ratio than in the ABL. The profiles of the wind components indicate northwesterly winds 499 

within the ABL during the morning hours, turning to westerlies later. Westerlies during the 500 

actual virtual measurement duration from late morning until noon are required to investigate the 501 

candidate OSDs from Sect. 2.3. 502 

 503 

 504 

Figure 5. LES domain-averaged vertical profiles of (a) potential temperature, (b) water vapor 505 

mixing ratio and (c) horizontal wind velocities at different simulation times. 506 
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Figure 6 shows a horizontal cross-section of the instantaneous and time-averaged vertical wind 507 

component at a height of 100 m during the virtual measurement period at 11:00. Instantaneous 508 

up and downdrafts ranging from −2 m s−1 to 3 m s−1 can be observed. The up and downdrafts 509 

indicate elongated structures aligned with the mean-wind direction at this height level. Even 510 

though these organized structures are not stationary in space due to the slightly changing wind 511 

direction (see Figure 5), they still can be observed in the temporal average. 512 

 513 

 514 

Figure 6. LES x-y cross section of (a) instantaneous and (b) 30-minute time-averaged vertical 515 

velocity at 100 m height at 11:00 CST simulation time. 516 

 517 

Figure 7 shows vertical profiles of the domain-averaged sensible and latent heat flux. Both flux 518 

profiles display a similar shape, linearly decreasing with height and reaching a minimum at the 519 

ABL top. These negative heat fluxes indicate entrainment of warm and moist air from the 520 

inversion into the ABL. This is supported also by Figure 5, where the inversion layer exhibits a 521 

higher mixing ratio compared to the ABL. Figure 7 further shows that the subgrid-scale fluxes 522 

contribute less than 1‒2 % to the total vertical transport at the measurement levels. This indicates 523 

that the vertical transport of heat and moisture is well resolved at these levels. 524 
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 525 

 526 

Figure 7. Domain averaged vertical flux profiles of (a) sensible heat and (b) latent heat at 11:00 527 

CST simulation time. The solid lines show the total simulated fluxes, consisting of resolved 528 

fluxes (dashed lines) and sub-grid parameterized fluxes (dotted lines). 529 

 530 

3.2 ERF retrievals 531 

To create a space- and time-aligned data set (Figure 3a), ERF first calculates Wavelet-532 

decomposed EC fluxes directly from the high-frequency raw data. This facilitates inclusion of 533 

longer transporting scales compared to traditional EC, as well as unprecedented spatial and 534 

temporal resolution of the resulting fluxes (Figure 8). 535 

 536 

 537 
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Figure 8. Space-resolved sensible heat flux from high-rate space-scale decomposition of virtual 538 

airborne measurements. 539 

 540 

Next, ERF relates the time- and space-resolved EC flux responses in the atmosphere to 541 

biophysical drivers on the surface (Figure 9), such as land surface temperature and land surface 542 

moisture. In the present application land surface temperature and land surface moisture are taken 543 

from cross-sections at the vertical LES level closest to the surface. In real-world ERF 544 

applications, these are substituted with space-borne and airborne remote sensing data products, 545 

or reanalysis data (e.g., Serafimovich et al., 2018). This facilitates mathematically rigorous data 546 

overlays among response and driver observations at minute- and decameter-scale. The result is a 547 

 548 

 549 

Figure 9. Source area modeling (30%, 60%, 90% contour lines) relates observations across 550 

platforms and representations by determining the surface sources of the time- and space-resolved 551 

EC fluxes. Here superimposed over the LES sensible heat flux surface forcing (a) Virtual 552 

AmeriFlux supersite tower at the center of the study domain at 112 m measurement height. (b) 553 

Virtual UWKA flight track at 100 m measurement height. 554 
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space-time aligned data set for each virtual EC tower and for each virtual EC flight track. Both, 555 

the tower and airborne EC data sets comprise the same variables in identical units, and were 556 

processed to ensure cross-platform compatibility and avoid biases (Sect. 2.5). This allows 557 

combining the virtual tower EC results with corresponding virtual airborne EC results into a 558 

single space-time aligned data set for each of the 12 alternative OSDs. 559 

The ERF machine learning component then extracts a driver-response process model from the 560 

resulting space- and time-aligned dataset. Here, we trained a total of 78 machine learning 561 

models. These consisted of 13 candidate OSDs × 2 fluxes (sensible and latent heat) × 3 replicates 562 

(to quantify stochastic uncertainty in the response data products). Figure 10 shows example 563 

driver-response surfaces for sensible and latent heat flux as a function of their principal drivers, 564 

energy input, land surface temperature and land surface moisture, respectively. This exemplifies 565 

how the turbulent diffusion coefficient connects the drivers to the flux response within the 566 

physics-guided ERF model structure. In Figure 10a the sensible heat flux increases primarily 567 

 568 

 569 

Figure 10. Example ERF response surfaces. (a) Sensible heat flux as a function of energy input 570 

and land surface temperature (LST). (b) Latent heat flux as a function of energy input and land 571 

surface moisture (LSM). For this visualization, all other drivers are kept at their median value. 572 
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with land surface temperature and secondarily with energy input. The relationship reaches a 573 

plateau around 290.3 K which deviates from a one-dimensional, monotonic and linear gradient-574 

flux relationship, indicative of additional feedback processes. Conversely, in Figure 10b the 575 

latent heat flux increases primarily with energy input and secondarily with land surface moisture, 576 

with monotonic and approximately linear relationships across the range of drivers. 577 

Ultimately, the physics-guided ERF driver-response process model complements the properties 578 

of response and driver observations into a response data product. In the present example the 579 

response data products are decameter-resolution sensible heat flux maps, projected explicitly in 580 

space and time across the study domain to the median relative measurement height of the 49 m 581 

towers (0.16 of the ABL height; Figure 11). We projected the flux maps for the tower-only 582 

space-time aligned data set (baseline OSD; Figure 11a), and then separately for each of the 12 583 

joint tower and aircraft space-time aligned data sets (alternative OSDs; Figure 11c). Now the 584 

flux maps that ERF reconstructed from the virtual measurements alone can be compared to the 585 

original LES surface flux forcings (Figure 11b). 586 

 587 

 588 

Figure 11. Example ERF response data products: sensible heat flux maps independently derived 589 

for (a) the tower-only space-time aligned data set and (c) for the joint tower and aircraft space-590 

time aligned data set, alongside (b) the LES reference surface flux field.  591 

 592 
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3.3 Evaluation of design hypotheses 593 

The ERF-derived flux maps alongside the LES surface forcing in Figure 11 allow us to assess the 594 

design hypotheses (Sect. 2.3) as a function of the different candidate OSDs. For this purpose, we 595 

evaluated the change in the optimality criteria (Sect. 2.2) for each of the 12 joint tower and 596 

aircraft alternative OSDs relative to the tower-only baseline OSD. In the following Table 1 ‒ 597 

Table 3 we performed all aggregations using arithmetic mean and standard deviation operators. 598 

In all cases the aggregations include two fluxes (sensible and latent heat) with three machine 599 

learning replicates each, plus additional aggregation as specified. 600 

In response to the first design hypothesis H1 we address the question how critical it is for 601 

airborne EC to measure perpendicular to the prevailing wind. Table 1 shows the results for each 602 

optimality criterion as a function of the aircraft track angle on the mean wind direction, 603 

aggregated over all three flight sequences. We can see that track angles in the range of 90°±45° 604 

on the mean wind direction yield limited improvement in spatial coverage (23.3±1.8% ‒ 605 

25.6±0.1%) compared to wind-parallel patterns (0°; 20.9±1.9%). However, within the same 606 

range of track angles the improvement in energy balance ratio and spatial patterning 607 

approximately double to octuple (Table 1 green cells). 608 

 609 

Table 1. Percent improvement of the joint tower and aircraft EC alternative OSDs relative to the 610 

tower-EC-only baseline OSD, aggregated over all three flight sequences. The results are shown 611 

as a function of optimality criterion (rows) and aircraft flying the grid pattern in various track 612 

angles on the mean wind direction (columns). Green cells highlight marked improvements that 613 

are further discussed in the text. 614 

Optimality criterion All angles 0° 45° 60° 90° 

Spatial coverage 23.6±2.2 20.9±1.9 24.7±0.8 23.3±1.8 25.6±0.1 

Energy balance ratio 6.8±5.3 1.7±1.4 6.4±5.3 6.4±4.7 12.8±3.1 

Spatial patterning 23.2±11.7 13.7±9.2 34.6±3.3 26.2±6.8 18.3±15.2 

 615 
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The improvement in spatial patterning when adding wind-parallel flights to the tower network is 616 

limited to 13.7±9.2%, compared to 18.3±15.2 ‒ 34.6±3.3% for adding flights with 45° ‒ 90° 617 

aircraft track angle on the mean wind. Irrespective of the track angle, the observations along a 618 

flight track are never entirely independent from each other due to along- and cross-wind 619 

dispersion. For wind-parallel flights, Figure 12a indicates a high degree of source area overlap 620 

and thus self-correlation among the observations, resulting from strong along-wind dispersion 621 

along the flight track. In contrast, Figure 12b shows less overlapping source areas along the 622 

flight track of wind-perpendicular flights, with the comparatively weaker cross-wind dispersion 623 

now controlling the overlap. The latter strategy results in observations that capture more 624 

independent samples and spatial variability. Thus, the dominating mode of atmospheric 625 

dispersion with respect to the aircraft track angle helps to explain the differences in the spatial 626 

patterning optimality criterion. For our study setup we reach a critical overlap resulting from the 627 

combined effects of along- and cross-wind dispersion at track angles shallower than 90°±45° on 628 

the mean wind direction. 629 

Furthermore, at the virtual aircraft flight height of 100 m the time-averaged vertical wind cross-630 

section in Figure 6b shows organized structures that are elongated in the mean-wind direction. 631 

These organized structures are among the most promising leads to explain the frequently 632 

observed non-closure of the energy balance, in particular from tower EC measurements 633 

(Matthias Mauder et al., 2020). These structures consist of more spatially-expansive though 634 

weaker subsidence zones and more spatially-limited though stronger convection zones (Etling & 635 

Brown, 1993; Kanda et al., 2004; Donald H. Lenschow & Stankov, 1986; Moeng & Rotunno, 636 

1990; Petty, 2020). So, when applied to aircraft EC measurements, wind-parallel flights are more 637 

likely to occur along the subsidence zones than along the convection zones. This helps explain 638 

why adding wind-parallel flights to the tower network yields only a limited improvement of the 639 

energy balance ratio criterion (1.7±1.4%). Conversely, wind-perpendicular flights trend to 640 

observe combinations of subsidence- and convection zones that approximately balances the 641 

atmospheric conservation of mass and energy. This explains the eightfold improvement 642 

(12.8±3.1%) when adding wind-perpendicular flights to the tower network compared to wind-643 

parallel flights. In between these two extreme cases, adding the flights with 45° and 60° track 644 
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angles to the tower network still yields an approximately fourfold improvement (6.4±4.7% ‒ 645 

6.4±5.3%) over the wind-parallel flights. 646 

 647 

 648 

Figure 12. Example virtual flight tracks and their 30%, 60% and 90% source area contours 649 

superimposed over the LES sensible heat flux surface forcing (W m−2). (a) Wind-parallel flights 650 

sample source areas that are elongated along the flight track leading to considerable overlap. (b) 651 

Wind-perpendicular flights sample less overlapping source areas along the flight track, and thus 652 

capture more independent samples and spatial variability. 653 

 654 

Next, we address the design hypothesis H2 whether it is more informative to fly a finely-spaced 655 

pattern once, or to fly a coarsely-spaced pattern multiple times. Table 2 shows that the spatial 656 

coverage and energy balance ratio criteria are not particularly sensitive to the flight sequence. 657 

One exception is the particularly high and consistent improvement in the spatial patterning 658 

performance criterion of the alternating sequence (29.1±5.4%; Table 2 green cells). It is the only 659 

sequence that "carpets" the CHEESEHEAD19 domain side-to-side at fine time- and space 660 

increments. All other sequences progress in coarser increments, such as first completing all 661 
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parallel flight tracks and then revisiting the interspersed diagonal flight tracks. In the context of 662 

the 2 km horizontally spaced parallel flight tracks, K. Xu et al. (2017) report a 411±88 m 663 

characteristic surface length scale of landscape elements in the CHEESEHEAD19 domain. The 664 

finer increments of the parallel-diagonal alternating sequence let ERF relate drivers and 665 

responses closer to the characteristic surface length scale, and thus to reproduce the spatial 666 

patterning. 667 

 668 

Table 2. Percent improvement of the joint tower and aircraft EC alternative OSDs relative to the 669 

tower-EC-only baseline OSD, aggregated over all four aircraft track angles on the mean wind 670 

direction. The results are shown as a function of optimality criterion (rows) and aircraft flying 671 

the grid pattern in various sequences (columns). The green cell highlights a marked improvement 672 

that is further discussed in the text. 673 

Optimality criterion All sequences Alternating Outbound Return 

Spatial coverage 23.6±2.2 23.0±3.0 23.5±1.8 24.4±1.9 

Energy balance ratio 6.8±5.3 7.9±5.3 6.0±6.6 6.6±5.4 

Spatial patterning 23.2±11.7 29.1±5.4 14.9±15.7 25.6±9.0 

 674 

To summarize, flight patterns with a track angle in the range of 90°±45° on the mean wind 675 

direction yielded approximately double the performance improvement of wind-parallel patterns. 676 

This finding is irrespective of the flight sequence, but most consistent for the alternating flight 677 

sequence (21.6±11.5% ‒ 22.6±9.4%; Table 3 green cells). Compared to the worst-case 678 

combination of wind-parallel flight patterns with the outbound flight sequence (9.6±11.1% 679 

improvement) this equates to doubling the scientific return.  680 
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Table 3. Percent improvement of the joint tower and aircraft EC alternative OSDs relative to the 681 

tower-EC-only baseline OSD, aggregated into a single score over all optimality criteria. The 682 

results are shown as a function of aircraft flying the grid pattern in various sequences (rows) and 683 

track angles on the mean wind direction (columns). Green cells highlight marked improvements 684 

that are further discussed in the text. 685 

Flight sequence All angles 0° 45° 60° 90° 

All sequences 17.9±10.8 11.6±8.8 19.9±12.2 16.9±10.0 18.5±9.6 

Alternating 20.0±10.2 13.3±11.4 22.6±9.4 21.6±11.5 22.4±11.7 

Outbound 14.8±11.6 9.6±11.1 21.3±15.9 13.8±11.2 14.5±11.9 

Return 18.9±10.7 13.4±10.3 21.8±17.7 20.5±10.2 19.8±6.2 

 686 

3.4 Field campaign resources 687 

Flying the grid pattern in the alternating sequence provided the best and most consistent results, 688 

while also being the most straightforward sequence for operational implementation. Further, to 689 

satisfy the 90°±45° track angle on mean wind condition we derived three rotationally symmetric 690 

sets of waypoints at 60° increments (Figure 13). Flying the numbered waypoint in ascending 691 

order results in three alternating flight sequences SE1, SW1 and WE1 with 330°, 30°, and 90° 692 

azimuth of the parallel tracks, respectively. Owing to rotational symmetry, flying the numbered 693 

waypoints in descending order results in three additional alternating flight sequences SE2, SW2 694 

and WE2 with 150°, 210°, and 270° azimuth of the parallel tracks, respectively. Reversing the 695 

waypoint order allows the aircraft to progress through the flight tracks in downwind order for 696 

any given mean wind direction. This aims to reduce the space-time ambiguity resulting from 697 

airborne EC observing different surface conditions over hundreds of kilometers while at the 698 

same time the diurnal cycle progresses over the course of several hours. Lastly, to avoid the town 699 

and airfield of Park Falls, WI immediately west of the CHEESEHEAD19 domain, we shifted the 700 

WE1/WE2 set of waypoints 5 km to the east (Figure 13c). 701 

 702 
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 703 

Figure 13. Three sets of waypoints define three distinct flight patterns, named after the relative 704 

location of their first two waypoints: (a) south-west (SW), (b) south-east (SE), and (c) west-east 705 

(WE). Flying the numbered waypoints either in ascending order (SW1, SE1, WE1) or 706 

descending order (SW2, SE2, WE2) resulted in six distinct flight sequences that maximize data 707 

coverage under different wind conditions. Map credit: James Mineau, University of Wisconsin – 708 

Madison. 709 

 710 

To support daily flight planning we distilled the six alternating flight sequences into a flight 711 

planning wind rose (Figure 14). There we implemented the track angle condition by 712 

superimposing over a wind rose the wind sector aligned 90°±45° to the parallel tracks of each of 713 

the six alternating flight sequences. This allows determining the appropriate flight sequence as a 714 

function of the forecasted mean wind direction. For example, if experiencing southerlies (180°) 715 

the most suitable flight sequence is WE2. Owing to rotational symmetry, the wind sector for 716 

each flight sequence overlaps with each of its two neighbors by 30°. This provides a margin for 717 

accommodating changing synoptic conditions. For example, if experiencing south-718 

southwesterlies (210°) in the morning the WE2 and SE1 flight sequences would be equally 719 

suitable. If however the mean direction is forecasted to shift to westerlies (270°) in the course of 720 

the day the SE1 flight sequence simplifies flight operation by satisfying the 90°±45° track angle 721 

on mean wind condition with a single flight sequence for a given day. 722 
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 723 

 724 

Figure 14. Flight planning wind rose to choose the appropriate flight sequence as a function of 725 

the forecasted mean wind direction. Owing to rotational symmetry, the wind sector for each 726 

flight sequence overlaps with each of its two neighbors by 30°. This provides a margin for 727 

accommodating changing synoptic conditions. 728 

 729 

4 Discussion 730 

Upon deriving the LES-ERF framework, we identified an optimal OSD that promises to more 731 

than double CHEESEHEAD19 scientific return. Here we initially discuss how these numerical 732 

gains relate to improving our ability for addressing CHEESEHEAD19 science objectives, and 733 

their limitations. We then examine how the resulting field campaign resources improved flight 734 

operation and crew safety by an order-of-magnitude. Lastly, we reflect our findings in the light 735 

of existing design approaches, provide general recommendations for future OSDs, and discuss 736 

remaining challenges and future work. 737 

4.1 Optimizing the CHEESEHEAD19 observing system design 738 

LES-ERF used three optimality criteria (Sect. 2.2; CR1 spatial coverage, CR2 energy balance 739 

ratio, CR3 spatial patterning) that we tailored to represent CHEESEHEAD19’s science 740 
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objectives numerically. Furthermore, we identified two specific design hypotheses that we 741 

postulate the science objectives, and hence optimality criteria to be sensitive to (Sect. 2.3; H1 742 

track angle on mean wind, H2 fine vs. coarse flight sequence). CHEESEHEAD19’s first science 743 

objective O1 is to show that higher surface heterogeneity promotes energy transport in 744 

atmospheric mesoscale eddies. Our ability to address this science objective increases with the 745 

truthful reproduction of CR1 surface flux spatial coverage and CR3 spatial patterning. LES-ERF 746 

allowed us to assess changes in these criteria resulting from the different OSDs by comparing 747 

ERF flux map reproductions to the original LES surface flux forcing. We found that CR1 spatial 748 

coverage is largely insensitive to either H1 track angle on mean wind (Table 1), and H2 fine vs. 749 

coarse flight sequence (Table 2). Conversely, CR3 spatial patterning proved to be highly 750 

sensitive to H1 track angle on mean wind. Track angles in the range of 90°±45° on the mean 751 

wind yielded double to triple improvements over wind-parallel flights (Table 1). Similarly, we 752 

showed that CR3 spatial patterning is sensitive to H2 fine vs. coarse flight sequence (Table 2). 753 

The finely spaced “Alternating” sequence yielded the highest and most consistent spatial 754 

patterning improvements of about 50% over the other flight sequences. 755 

CHEESEHEAD19’s second science objective O2 aims to account for energy transport in 756 

mesoscale eddies and determine the “true” surface energy balance to improve model 757 

representation of sub-grid processes. As such, our ability to address this science objective hinges 758 

on improved closure of CR2 the energy balance ratio, which proved to be highly sensitive to H1 759 

track angle on mean wind. Here, track angles in the range of 90°±45° on the mean wind yielded 760 

quadruple to octuple improvements over wind-parallel flights (Table 1). On the other hand, CR2 761 

energy balance ratio was comparatively insensitive to H2 fine vs. coarse flight sequence 762 

(Table 2). 763 

Finally, CHEESEHEAD19’s third science objective O3 aims to demonstrate that ERF yields 764 

representative fluxes at model grid scale regardless of mesoscale eddies. ERF’s ability to 765 

reproduce the surface flux is thus directly related to the combination of all criteria discussed 766 

above, CR1 spatial coverage, CR2 energy balance ratio, and CR3 spatial patterning. From 767 

aggregating over all optimality criteria into a single score, we demonstrated that overall 768 

improvement is highly sensitive to H1 track angle on mean wind. Flight patterns with a track 769 
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angle in the range of 90°±45° on the mean wind yielded approximately double the performance 770 

improvement of wind-parallel patterns (Table 3). This finding is less sensitive to H2 fine vs. 771 

coarse flight sequence, though most consistent for the finely spaced “Alternating” sequence. 772 

Overall, this combination doubles the scientific return compared to the worst-case combination 773 

of wind-parallel flight patterns with the outbound flight sequence. Overall, the study hypothesis 774 

that CHEESEHEAD19 scientific return is sensitive to LES-ERF optimization can thus be 775 

accepted. On the other hand, the design hypothesis H1 that it is critical for airborne EC to 776 

measure perpendicular to the prevailing wind should be rejected, as up to ±45° tolerance yielded 777 

comparable results for CHEESEHEAD19 science objectives. Lastly, the design hypothesis H2 778 

that it is more informative to fly a finely spaced pattern should be accepted, with most consistent 779 

results for the finely spaced “Alternating” sequence. 780 

The field measurement resources (Sect. 3.4) encapsulate these findings into only three sets of 781 

waypoints and six alternating flight sequences incremented at 60° azimuth. These provide a 782 

balance between scientific fidelity and flight crew safety. On the one hand, the small number of 783 

waypoints and flight sequences is sufficient to maximize CHEESEHEAD19 scientific return by 784 

enabling to observe the 90°±45° track angle on mean wind condition at all times. Furthermore, 785 

the 60° incrementation in combination with the ±45° tolerance on perpendicularity to the mean 786 

wind provides 30° overlap among flight sequences to support decision-making during non-787 

stationary synoptic conditions. On the other hand, the parsimonious number of only 6 flight 788 

sequences and an even smaller number of 3 sets of waypoints simplify flight planning and 789 

navigation. In combination with entirely avoiding the town and airfield of Park Falls this 790 

promotes flight crew safety by an order of magnitude compared to the originally envisioned 48 791 

flight sequences. Specifically, it frees up the flight crew from arduous navigation details, thus 792 

reducing fatigue, increasing awareness during the 100 m low-level flight maneuvers, and 793 

ultimately reducing the margin for human error. Due to its vicinity to the 400 m tall tower and 794 

related in-flight safety concerns the central diagonal flight track in this study was not performed 795 

during the actual CHEESEHEAD19 field measurement campaign. 796 

After deriving the above strategy, we detected an inconsistency in the vertical humidity profile 797 

that we used to initialize the LES and thus to produce the LES-ERF virtual observations. 798 
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Specifically, we had erroneously added a positive vertical humidity gradient at 350 m above 799 

ground instead of the negative vertical humidity gradient typically observed by radiosondes 800 

adjacent to the CHEESEHEAD19 domain (sign reversal). As a result, we detected an ABL 801 

height of only 500 m in the LES while field observations typically indicate >1 km during similar 802 

conditions around the CHEESEHEAD19 domain. In addition, during 1100 CST we detected a 803 

small entrainment flux of humid air from above the LES ABL into the dryer air below, which is 804 

not typical of summertime convective ABL conditions around the CHEESEHEAD19 domain. In 805 

the subsequent stages of LES-ERF, we used virtual tower EC observations at 49 m (N=20 806 

towers), 112 m (N=1 tower), and 371 m (N=1 tower) above ground, and virtual airborne EC 807 

observations at 100 m above ground. At any given time, the surface fluxes prescribed in the LES 808 

were orders of magnitude larger compared to the entrainment fluxes. Hence, the surface fluxes 809 

dominated all virtual tower and airborne observations, possibly with exception of the 371 m 810 

tower that however still reported an average upward latent heat flux of 2.2±6.6 W m−2. While the 811 

uncharacteristically shallow ABL height results in two to three times more pronounced vertical 812 

flux divergence, LES-ERF accounts for this by utilizing the relative measurement height in the 813 

ABL as an ERF driver. Furthermore, the study design cancels possible residual impacts on the 814 

CR2 energy balance ratio by normalizing all results for the alternative OSDs (tower and aircraft) 815 

with the results for the baseline OSD (tower-only). To summarize, the erroneous vertical 816 

humidity gradient resulted in a modelled LES atmosphere that was less specific to the 817 

CHEESEHEAD19 domain than originally envisioned. However, this should have little to no 818 

bearing on the general findings that informed the CHEESEHEAD19 OSD, owing to ERF 819 

accounting for vertical flux divergence and the normalized study design. If at all, surface 820 

heterogeneity scales across the CHEESEHEAD19 domain are more realistically reproduced 821 

compared to the idealized LES runs in many previous studies (e.g., Kanda et al., 2004; Sühring 822 

et al., 2018; K. Xu et al., 2020). 823 

Overall, the application of the LES-ERF-derived field measurement resources enabled the 824 

successful acquisition of 14,400 km airborne data by the UWKA aircraft (Paleri et al., 2019). 825 

The 24 UWKA research flights and their on-site planning covered 480 flight legs during 72 826 

hours of flight time and three CHEESEHEAD19 intensive observation periods (Butterworth et 827 

al., 2020). This further demonstrates the successful application of LES-ERF and its utility for 828 
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determining concise and adaptive field measurement resources that optimize the effectiveness 829 

and safety of research flights. 830 

4.2 Benefits for coordinated environmental observations 831 

LES-ERF extends on previous approaches to designing large-scale field campaigns such as 832 

FIFE, BOREAS, NOPEX, LITFASS-98, LITFASS-2003, MAGIM and ScaleX (Sect. 1). 833 

Specifically, LES-ERF not only utilizes but fully contextualizes expert knowledge by conducting 834 

virtual pre-field measurements in LES, and using evidence-driven ERF to quantify the resulting 835 

information contents. 836 

For decades, LES “data from knowledge” studies have investigated surface-atmosphere 837 

interactions including energy balance processes (J. W. Deardorff, 1972; Etling & Brown, 1993; 838 

Kanda et al., 2004; Sühring & Raasch, 2013; Wyngaard & Brost, 1984). Indeed, LES have 839 

become useful to contextualize observational phenomena with increasingly complex feedbacks, 840 

including natural resources such as air quality (Khan et al., 2020; Y. Zhang et al., 2020). 841 

However, the resulting data is detailed to a point where it becomes challenging to fully utilize the 842 

provided information for extracting and describing the phenomena of interest. K. Xu et al. (2020) 843 

point to a possible solution to this dilemma, by complementing detailed LES outputs with the 844 

dedicated ERF “knowledge from data” approach. Here, we took a next step and demonstrated the 845 

usefulness of the LES-ERF symbiosis for designing real-world field measurements. Using LES 846 

for OSD has been a rare application to date (Cortina & Calaf, 2017; Gehrke et al., 2019), and to 847 

our knowledge the present study is the first of its kind that empowers investigators to harness the 848 

combined power of complementing NSs and data mining for this purpose. 849 

OSSEs are widely used in the earth-system sciences to predict the performance of major, long-850 

term research equipment and facility investments (Hargrove & Hoffman, 2004; Hoffman & 851 

Atlas, 2016; Lucas et al., 2015; Masutani et al., 2010; J. Park & Kim, 2020; L. Zhang & Pu, 852 

2010). The LES-ERF symbiosis now provides the necessary resolution of time, space, and 853 

processes to make the power of OSSEs also accessible for designing field measurements at 854 

smaller and previously inaccessible scales. Specifically, the CHEESEHEAD19 example 855 

application at the interface of meso- and microscale meteorology demonstrated a new degree of 856 
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realism and explicitness in maximizing the joint information from ground-based, airborne, and 857 

spaceborne observations for scaling and modeling. 858 

Building on this central property, LES-ERF is modularly extensible in multiple directions. For 859 

example, LES-ERF can integrate new types of observations in addition to tower, aircraft, and 860 

satellite observations, so long as their source areas are readily quantifiable. Examples are remote 861 

sensing of the atmosphere (Helbig et al., 2020; Wulfmeyer et al., 2018) and soil and biometric 862 

observations (Metzger, Ayres, Durden, et al., 2019). This provides a promising avenue to 863 

maximize cross-disciplinary, cross-project, and ultimately cross-institutional synergies. For 864 

example, such as through simulating the design of super-sites that envision to synergize diverse 865 

observational infrastructures including from the US National Science Foundation’s National 866 

Center for Atmospheric Research and National Ecological Observatory Network (Metzger, 867 

Ayres, Desai, et al., 2019). Then upon completion of the planned field measurements, the real-868 

world data can immediately substitute the LES “data from knowledge” module, while the ERF 869 

“knowledge from data” module continues to perform the intended end-to-end analyses. LES-870 

ERF thus provides a framework to prepare and test the quantification of science objectives well 871 

ahead of the actual field measurements, thus reducing latency from field data capture to 872 

knowledge creation. Ultimately, the characteristics of LES-ERF make the power of OSSEs 873 

accessible to an entirely new range of use cases. Examples include natural climate solutions 874 

(Hemes et al., in review), emission inventory validation (Desjardins et al., 2018), urban air 875 

quality (Squires et al., 2020), industry leak detection (Kohnert et al., 2017), and multi-species 876 

applications (Vaughan et al., 2017). 877 

4.3 Remaining challenges and future work 878 

Notwithstanding these key benefits, a LES-ERF study such as presented here adds labor, 879 

computing, and hence funding requirements ahead of the actual field measurements. Considering 880 

a typical research grant cycle, one would ideally perform the LES-ERF OSDs prior to submitting 881 

a funding proposal, or at least request some level of design flexibility. We conducted the present 882 

study over the course of approximately three months, und utilized the labor and computing 883 

resources summarized in Table 4. Overall, we spent ~480 h of labor, or three person-months, of 884 

which the LES and ERF analyses consumed ~40% and ~60%, respectively. The main labor 885 
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drivers were study conceptualization and setup including data acquisition for LES boundary 886 

conditions. It is possible to perform these steps well in advance, e.g. to reduce the LES-ERF 887 

effort between grant receipt and field measurements, which is typically also a period with high-888 

demand for overall coordination. The 50 h spent on ERF interpretation also included active 889 

dialogue and iteration with the flight crew, resulting in balanced resources for airborne operation. 890 

Table 4 also shows how LES and ERF differed in their computational needs. LES demanded 891 

high-performance computing with 230,000 CPU hours and up to 120 TB memory, which we 892 

primarily performed on the US National Center for Atmospheric Research Cheyenne 893 

supercomputer (https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/cheyenne). 894 

Conversely, ERF required a high-throughput computing architecture, for which we primarily 895 

used the US National Science Foundation’s CyVerse open science workspace 896 

(https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/cyverse). Overall, the strong  897 

 898 

Table 4. Labor and computing resources utilized for deriving the CHEESEHEAD19 observing 899 

system design, separately for Large Eddy Simulations (LES) and Environmental Response 900 

Functions (ERF). 901 

Resource LES ERF 

Total Labor 180 h 300 h 

 Conceptualization 30 h 70 h 

 Setup 110 h 130 h 

 Analysis 20 h 50 h 

 Interpretation 20 h 50 h 

Computing architecture High-performance High-throughput 

 CPU hours 230,000 7,000 

 CPUs 600 ‒ 1,800 2 ‒ 16 

 Memory 2 ‒ 120 TB 16 ‒ 128 GB 

 Data produced 210 GB 4 GB 

 902 

https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/cheyenne
https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/cyverse
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data requirements of ERF, including use of high-frequency EC data, currently drive LES-ERF 903 

computational needs. Investigations into relaxing ERF data requirements while retaining overall 904 

performance are in progress. This could permit generating the necessary virtual observations 905 

with NSs that substantially reduce resource demand compared to LES, such as Reynolds-906 

averaged Navier-Stokes (Santiago et al., 2010; Sogachev et al., 2002). In turn, this could enable 907 

application of a generalized “NS-ERF” approach to OSSEs for use cases that require 908 

consideration of more extensive space-, time-, and disciplinary domains. Furthermore, a unified 909 

graphical user interface could aid accessibility and usability to better support investigators from 910 

diverse backgrounds. 911 

In Sect. 4.1 we discussed several sources of uncertainty that emanated from the specific 912 

numerical analyses chosen to optimize the CHEESEHEAD19 flight strategy. In addition, sources 913 

of uncertainty that surround the LES-ERF concept as a whole also warrant discussion. One of the 914 

strengths of OSSEs in general and LES-ERF in particular is to quantify the efficacy of candidate 915 

OSDs for cross-disciplinary applications. However, individual disciplines themselves often 916 

invoke very specific criteria and assumptions so their contributions to the overall project are 917 

valid (Sect. 1). Also determining the OSD trade-offs for meeting these discipline-specific criteria 918 

requirements could complement LES-ERF to an end-to-end science traceability assessment. One 919 

direction of future work could use the CHEESEHEAD19 field measurements to derive and 920 

evaluate such an end-to-end assessment in general and the presented OSD results in particular. 921 

Furthermore, earth system observations are highly variable in their space-time extent and 922 

resolution (Figure 1). However, data overlays such as done in ERF require a “least common 923 

denominator” space-time resolution among all considered observations. Attaining this least 924 

common denominator while retaining quasi-continuous data coverage remains an observational 925 

challenge, even for WMO Essential Climate Variables such as land surface temperature. Toolkits 926 

that leverage multi-sensor data fusion to provide the necessary resolution and coverage to 927 

support plot- to landscape-scale research are only recently emerging (Pincebourde & Salle, 2020; 928 

P. Wu et al., 2013). 929 

Earth system observations are also variable in their space-time representations. These include 930 

gridded remote sensing observations in Eulerian coordinates, and EC heat flux observations in 931 
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Lagrangian coordinates (Metzger, 2018). Data overlays among these observations leverage 932 

source area models, which connect the two representations in space and time (Leclerc & Foken, 933 

2014). However, e.g.Bertoldi et al. (2013); K. Xu et al. (2020) point out a possible dependency 934 

of the source area attribution performance on the thermodynamic properties of the quantity 935 

observed in Lagrangian coordinates. Robust data overlays across coordinate representations 936 

might thus depend on separate source area considerations for neutral density vs. self-buoyant 937 

quantities. 938 

5 Conclusions 939 

Surface-atmosphere synthesis is traditionally in the vanguard of interdisciplinary research, with 940 

efforts ranging from empirical studies over theoretical generalizations to NSs. More recently, 941 

data-intensive information discovery promises to further expand our insight into momentum, 942 

energy, water, and trace gas cycling. However, “data deluge” rather than the next 943 

interdisciplinary breakthrough can result from poor information overlap among ground, airborne 944 

and satellite observations, as well as numerical models. Scientific return hinges on our ability to 945 

merge information among these perspectives, for which the pre-field stage provides a unique 946 

opportunity to optimize the study design accordingly. 947 

We harnessed this opportunity by catalyzing recent advances in conducting virtual experiments 948 

within high-resolution LESs (“data from knowledge”) and physics-guided data science 949 

(“knowledge from data”) to create the LES-ERF approach. Traditional data capture focusses on 950 

intra-disciplinary best practices, and the cross-discipline explanatory power only becomes clear 951 

afterward. In contrast, LES-ERF explores tolerances (“value engineering”) in a numerical 952 

framework ahead of the actual field deployments, which offers a wide margin for improving 953 

cross-discipline post-field synthesis. For the CHEESEHEAD19 OSD, we used LES-ERF to 954 

maximize the information overlap across micro- and mesometeorological space and time scales. 955 

To date, these scales have predominantly been dealt with in a discontinuous fashion, which we 956 

overcame by combining cross-platform flux tower and flux aircraft responses in a single ERF for 957 

the first time. This demonstrated that a carefully designed flight strategy has the potential to 958 

double CHEESEHEAD19 scientific return across two specific design hypotheses, and to order-959 

of-magnitude improve flight operation and crew safety. 960 
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LES-ERF thus makes the benefits of OSSEs accessible for maximizing the return of cross-961 

disciplinary field measurements that previously had to rely on experience and expert knowledge 962 

alone. This property transcends academic field measurements such as presented here, and can 963 

inform natural climate solutions, emission inventory validation, urban air quality, industry leak 964 

detection and multi-species applications, among other use cases. 965 
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(https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/data-repo), mint a DOI and cite 974 
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repositories. 978 

Acknowledgements 979 

The National Ecological Observatory Network is a project sponsored by the National Science 980 

Foundation and managed under cooperative agreement by Battelle Ecology, Inc. This material is 981 

based upon work supported by the National Science Foundation [grant DBI-0752017 and AGS-982 

1822420]. Any opinions, findings, and conclusions or recommendations expressed in this 983 

material are those of the author and do not necessarily reflect the views of the National Science 984 

Foundation. We thank University of Wyoming King Air pilot Edward Sigel and flight crew for 985 

their flight strategy input, and James Mineau for creating the flight leg maps. L. Wanner’s and 986 

M. Mauder’s contributions were supported by Deutsche Forschungsgemeinschaft (DFG) Grant 987 

#406980118. 988 

 989 

https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/data-policy
https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/data-commons
https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/data-commons
https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/data-repo
https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/code-policy
https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/code-policy


manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
42 

References 990 

Atlas, R., Hoffman, R. N., Ma, Z., Emmitt, G. D., Wood, S. A., Jr., Greco, S., et al. (2015). 991 

Observing System Simulation Experiments (OSSEs) to evaluate the potential impact of an 992 

Optical Autocovariance Wind Lidar (OAWL) on numerical weather prediction. Journal of 993 

Atmospheric and Oceanic Technology, 32(9), 1593-1613. https://doi.org/10.1175/JTECH-D-15-994 

0038.1 995 

Avissar, R., & Schmidt, T. (1998). An evaluation of the scale at which ground-surface heat flux 996 

patchiness affects the convective boundary layer using large-eddy simulations. Journal of the 997 

Atmospheric Sciences, 55(16), 2666-2689. https://doi.org/10.1175/1520-998 

0469(1998)055<2666:AEOTSA>2.0.CO;2 999 

Bertoldi, G., Kustas, W., & Albertson, J. (2013). Evaluating source area contributions from 1000 

aircraft flux measurements over heterogeneous land using large-eddy simulation. Boundary-1001 

Layer Meteorology, 147(2), 261-279. https://doi.org/10.1007/s10546-012-9781-y 1002 

Beyrich, F., Herzog, H. J., & Neisser, J. (2002). The LITFASS project of DWD and the 1003 

LITFASS-98 experiment: The project strategy and the experimental setup. Theoretical and 1004 

Applied Climatology, 73(1), 3-18. https://doi.org/10.1007/s00704-002-0690-8 1005 

Beyrich, F., & Mengelkamp, H.-T. (2006). Evaporation over a heterogeneous land surface: 1006 

EVA_GRIPS and the LITFASS-2003 experiment - an overview. Boundary-Layer Meteorology, 1007 

121(1), 5-32. https://doi.org/10.1007/s10546-006-9079-z 1008 

Brown, J. R., & Fehige, Y. (2019). Thought experiments. In E. N. Zalta (Ed.), The Stanford 1009 

Encyclopedia of Philosophy (Winter 2019 ed., pp. 1010 

https://plato.stanford.edu/archives/win2019/entries/thought-experiment/). Stanford, USA: 1011 

Metaphysics Research Lab, Stanford University. 1012 

Butterbach-Bahl, K., Kögel-Knabner, I., & Han, X. (2011). Steppe ecosystems and climate and 1013 

land-use changes—vulnerability, feedbacks and possibilities for adaptation. Plant and Soil, 1014 

340(1), 1-6. https://doi.org/10.1007/s11104-010-0651-4 1015 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
43 

Butterworth, B. J., Desai, A. R., Metzger, S., Townsend, P. A., Schwartz, M. D., Petty, G. W., et 1016 

al. (2020). Connecting land-atmosphere interactions to surface heterogeneity in 1017 

CHEESEHEAD19. Bulletin of the American Meteorological Society, 1-71. 1018 

https://doi.org/10.1175/BAMS-D-19-0346.1 1019 

Charuchittipan, D., Babel, W., Mauder, M., Leps, J.-P., & Foken, T. (2014). Extension of the 1020 

averaging time in eddy-covariance measurements and its effect on the energy balance closure. 1021 

Boundary-Layer Meteorology, 152(3), 303-327. https://doi.org/10.1007/s10546-014-9922-6 1022 

Chen, B., Coops, N. C., Fu, D., Margolis, H. A., Amiro, B. D., Barr, A. G., et al. (2011). 1023 

Assessing eddy-covariance flux tower location bias across the Fluxnet-Canada Research 1024 

Network based on remote sensing and footprint modelling. Agricultural and Forest Meteorology, 1025 

151(1), 87-100. https://doi.org/10.1016/j.agrformet.2010.09.005 1026 

Chu, H., Baldocchi, D. D., John, R., Wolf, S., & Reichstein, M. (2017). Fluxes all of the time? A 1027 

primer on the temporal representativeness of FLUXNET. Journal of Geophysical Research: 1028 

Biogeosciences, 122(2), 289-307. https://doi.org/10.1002/2016JG003576 1029 

Cortina, G., & Calaf, M. (2017). Turbulence upstream of wind turbines: A large-eddy simulation 1030 

approach to investigate the use of wind lidars. Renewable Energy, 105, 354-365. 1031 

https://doi.org/10.1016/j.renene.2016.12.069 1032 

Deardorff, J. W. (1972). Numerical investigation of neutral and unstable planetary boundary 1033 

layers. Journal of the Atmospheric Sciences, 29(1), 91-115. https://doi.org/10.1175/1520-1034 

0469(1972)029<0091:NIONAU>2.0.CO;2 1035 

Deardorff, J. W. (1980). Stratocumulus-capped mixed layers derived from a three-dimensional 1036 

model. Boundary-Layer Meteorology, 18(4), 495-527. https://doi.org/10.1007/BF00119502 1037 

Desai, A. (1996 - ). AmeriFlux US-PFa Park Falls/WLEF, Dataset.  1038 

Desai, A. R., Xu, K., Tian, H., Weishampel, P., Thom, J., Baumann, D., et al. (2015). 1039 

Landscape-level terrestrial methane flux observed from a very tall tower. Agricultural and 1040 

Forest Meteorology, 201(0), 61-75. https://doi.org/10.1016/j.agrformet.2014.10.017 1041 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
44 

Desjardins, R. L., Worth, D. E., Pattey, E., VanderZaag, A., Srinivasan, R., Mauder, M., et al. 1042 

(2018). The challenge of reconciling bottom-up agricultural methane emissions inventories with 1043 

top-down measurements. Agricultural and Forest Meteorology, 248, 48-59. 1044 

https://doi.org/10.1016/j.agrformet.2017.09.003 1045 

Eddy, A. (1974). An approach to the design of meteorological field experiments. Monthly 1046 

Weather Review, 102(10), 702-707. https://doi.org/10.1175/1520-1047 

0493(1974)102<0702:AATTDO>2.0.CO;2 1048 

Etling, D., & Brown, R. A. (1993). Roll vortices in the planetary boundary layer: A review. 1049 

Boundary-Layer Meteorology, 65(3), 215-248. https://doi.org/10.1007/BF00705527 1050 

Foken, T. (2017). Micrometeorology (2 ed.). Berlin, Heidelberg: Springer. 1051 

Foken, T., Aubinet, M., Finnigan, J. J., Leclerc, M. Y., Mauder, M., & Paw U, K. T. (2011). 1052 

Results of a panel discussion about the energy balance closure correction for trace gases. Bulletin 1053 

of the American Meteorological Society, 92(4), ES13-ES18. 1054 

https://doi.org/10.1175/2011BAMS3130.1 1055 

Gao, Z., Liu, H., Russell, E. S., Huang, J., Foken, T., & Oncley, S. P. (2016). Large eddies 1056 

modulating flux convergence and divergence in a disturbed unstable atmospheric surface layer. 1057 

Journal of Geophysical Research: Atmospheres, 121(4), 1475-1492. 1058 

https://doi.org/10.1002/2015jd024529 1059 

Gehrke, K., Böske, L., & Beyrich, F. (2019). Analyse verschiedener Doppler-Lidar Scan-1060 

Strategien zur Ableitung des mittleren Windvektors in der konvektiven Grenzschicht auf Basis 1061 

von Large-Eddy-Simulationen. Paper presented at the DACH conference of German, Austrian 1062 

and Swiss meteorologists, Garmisch-Partenkirchen, Germany. 1063 

https://meetingorganizer.copernicus.org/DACH2019/DACH2019-241-1.pdf 1064 

Halldin, S., Gryning, S. E., Gottschalk, L., Jochum, A., Lundin, L. C., & Van de Griend, A. A. 1065 

(1999). Energy, water and carbon exchange in a boreal forest landscape - NOPEX experiences. 1066 

Agricultural and Forest Meteorology, 98-99, 5-29. https://doi.org/10.1016/S0168-1067 

1923(99)00148-3 1068 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
45 

Hargrove, W. W., & Hoffman, F. M. (2004). Potential of multivariate quantitative methods for 1069 

delineation and visualization of ecoregions. Environmental Management, 34(1), S39-S60. 1070 

https://doi.org/10.1007/s00267-003-1084-0 1071 

Helbig, M., Gerken, T., Beamesderfer, E., Baldocchi, D. D., Banerjee, T., Biraud, S. C., et al. 1072 

(2020). White Paper: Understanding land-atmosphere interactions through tower-based flux and 1073 

continuous atmospheric boundary layer measurements. Retrieved from Berkeley, CA, U.S.A.: 1074 

https://ameriflux.lbl.gov/community/highlight/whitepaper-understanding-land-atmosphere-1075 

interactions-through-tower-based-flux-and-continuous-atmospheric-boundary-layer-1076 

measurements/ 1077 

Hemes, K. S., Runkle, B., Novick, K., Baldocchi, D. D., & Field, C. B. (in review). The role of 1078 

ecosystem-scale flux measurements in assessing implementation of natural climate solutions.  1079 

Hey, T., Tansley, S., & Tolle, K. (2009). The fourth paradigm: Data-intensive scientific 1080 

discovery. Redmond, USA: Microsoft Research. 1081 

Hoffman, R. N., & Atlas, R. (2016). Future observing system simulation experiments. Bulletin of 1082 

the American Meteorological Society, 97(9), 1601-1616. https://doi.org/10.1175/BAMS-D-15-1083 

00200.1 1084 

Kaharabata, S. K., Schuepp, P. H., Ogunjemiyo, S., Shen, S., Leclerc, M. Y., Desjardins, R. L., 1085 

& MacPherson, J. I. (1997). Footprint considerations in BOREAS. Journal of Geophysical 1086 

Research, [Atmospheres], 102(D24), 29113-29124. https://doi.org/10.1029/97JD02559 1087 

Kaminski, T., Rayner, P. J., Voßbeck, M., Scholze, M., & Koffi, E. (2012). Observing the 1088 

continental-scale carbon balance: Assessment of sampling complementarity and redundancy in a 1089 

terrestrial assimilation system by means of quantitative network design. Atmospheric Chemistry 1090 

and Physics, 12(16), 7867-7879. https://doi.org/10.5194/acp-12-7867-2012 1091 

Kanda, M., Inagaki, A., Letzel, M. O., Raasch, S., & Watanabe, T. (2004). LES study of the 1092 

energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorology, 110(3), 1093 

381-404. https://doi.org/10.1023/B:BOUN.0000007225.45548.7a 1094 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
46 

Keller, M., Schimel, D. S., Hargrove, W. W., & Hoffman, F. M. (2008). A continental strategy 1095 

for the National Ecological Observatory Network. Frontiers in Ecology and the Environment, 1096 

6(5), 282-284. https://doi.org/10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2 1097 

Khan, B., Banzhaf, S., Chan, E. C., Forkel, R., Kanani-Sühring, F., Ketelsen, K., et al. (2020). 1098 

Development of an atmospheric chemistry model coupled to the PALM model system 6.0: 1099 

Implementation and first applications. Geosci. Model Dev. Discuss., 2020, 1-34. 1100 

https://doi.org/10.5194/gmd-2020-286 1101 

Kljun, N., Calanca, P., Rotach, M. W., & Schmid, H. P. (2004). A simple parameterisation for 1102 

flux footprint predictions. Boundary-Layer Meteorology, 112(3), 503-523. 1103 

https://doi.org/10.1023/B:BOUN.0000030653.71031.96 1104 

Koffi, E. N., Rayner, P. J., Scholze, M., Chevallier, F., & Kaminski, T. (2013). Quantifying the 1105 

constraint of biospheric process parameters by CO2 concentration and flux measurement 1106 

networks through a carbon cycle data assimilation system. Atmospheric Chemistry and Physics, 1107 

13(21), 10555-10572. https://doi.org/10.5194/acp-13-10555-2013 1108 

Kohnert, K., Serafimovich, A., Metzger, S., Hartmann, J., & Sachs, T. (2017). Strong geologic 1109 

methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. 1110 

Scientific Reports, 7(1), 5828. https://doi.org/10.1038/s41598-017-05783-2 1111 

Kumar, J., Hoffman, F. M., Hargrove, W. W., & Collier, N. (2016). Understanding the 1112 

representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements. 1113 

Earth Syst. Sci. Data Discuss., 2016, 1-25. https://doi.org/10.5194/essd-2016-36 1114 

Lauvaux, T., Schuh, A. E., Bocquet, M., Wu, L., Richardson, S., Miles, N., & Davis, K. J. 1115 

(2012). Network design for mesoscale inversions of CO2 sources and sinks. Tellus B: Chemical 1116 

and Physical Meteorology, 64(1), 17980. https://doi.org/10.3402/tellusb.v64i0.17980 1117 

Leclerc, M. Y., & Foken, T. (2014). Footprints in micrometeorology and ecology (1st ed.). 1118 

Berlin, Heidelberg, Germany: Springer. 1119 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
47 

Lenschow, D. H., Mann, J., & Kristensen, L. (1994). How long is long enough when measuring 1120 

fluxes and other turbulence statistics? Journal of Atmospheric and Oceanic Technology, 11(3), 1121 

661-673. https://doi.org/10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2 1122 

Lenschow, D. H., & Stankov, B. B. (1986). Length scales in the convective boundary layer. 1123 

Journal of the Atmospheric Sciences, 43(12), 1198-1209. https://doi.org/10.1175/1520-1124 

0469(1986)043<1198:LSITCB>2.0.CO;2 1125 

Loescher, H., Ayres, E., Duffy, P., Luo, H., & Brunke, M. (2014). Spatial variation in soil 1126 

properties among North American ecosystems and guidelines for sampling designs. PLoS One, 1127 

9(1), e83216. https://doi.org/10.1371/journal.pone.0083216 1128 

Lucas, D. D., Yver Kwok, C., Cameron-Smith, P., Graven, H., Bergmann, D., Guilderson, T. P., 1129 

et al. (2015). Designing optimal greenhouse gas observing networks that consider performance 1130 

and cost. Geosci. Instrum. Method. Data Syst., 4(1), 121-137. https://doi.org/10.5194/gi-4-121-1131 

2015 1132 

Mahecha, M. D., Gans, F., Sippel, S., Donges, J. F., Kaminski, T., Metzger, S., et al. (2017). 1133 

Detecting impacts of extreme events with ecological in situ monitoring networks. 1134 

Biogeosciences, 14(18), 4255-4277. https://doi.org/10.5194/bg-14-4255-2017 1135 

Mahrt, L. (1996). The bulk aerodynamic formulation over heterogeneous surfaces. Boundary-1136 

Layer Meteorology, 78(1-2), 87-119. https://doi.org/10.1007/BF00122488 1137 

Margairaz, F., Pardyjak, E. R., & Calaf, M. (2020). Surface thermal heterogeneities and the 1138 

atmospheric boundary layer: The relevance of dispersive fluxes. Boundary-Layer Meteorology, 1139 

175(3), 369-395. https://doi.org/10.1007/s10546-020-00509-w 1140 

Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., et al. (2020). 1141 

Overview of the PALM model system 6.0. Geosci. Model Dev., 13(3), 1335-1372. 1142 

https://doi.org/10.5194/gmd-13-1335-2020 1143 

Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., et al. 1144 

(2015). The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and 1145 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
48 

oceanic flows: model formulation, recent developments, and future perspectives. Geosci. Model 1146 

Dev., 8(8), 2515-2551. https://doi.org/10.5194/gmd-8-2515-2015 1147 

Mason, P. J. (1988). The formation of areally-averaged roughness lengths. Quarterly Journal of 1148 

the Royal Meteorological Society, 114(480), 399-420. https://doi.org/10.1002/qj.49711448007 1149 

Masutani, M., Woollen, J. S., Lord, S. J., Emmitt, G. D., Kleespies, T. J., Wood, S. A., et al. 1150 

(2010). Observing system simulation experiments at the National Centers for Environmental 1151 

Prediction. Journal of Geophysical Research: Atmospheres, 115(D7). 1152 

https://doi.org/10.1029/2009JD012528 1153 

Mauder, M., Desjardins, R. L., & MacPherson, I. (2007). Scale analysis of airborne flux 1154 

measurements over heterogeneous terrain in a boreal ecosystem. Journal of Geophysical 1155 

Research, [Atmospheres], 112(D13), D13112. https://doi.org/10.1029/2006JD008133 1156 

Mauder, M., Foken, T., & Cuxart, J. (2020). Surface-energy-balance closure over land: A 1157 

review. Boundary-Layer Meteorology. https://doi.org/10.1007/s10546-020-00529-6 1158 

Mauder, M., Jegede, O. O., Okogbue, E. C., Wimmer, F., & Foken, T. (2007). Surface energy 1159 

balance measurements at a tropical site in West Africa during the transition from dry to wet 1160 

season. Theoretical and Applied Climatology, 89(3), 171-183. https://doi.org/10.1007/s00704-1161 

006-0252-6 1162 

Metzger, S. (2018). Surface-atmosphere exchange in a box: Making the control volume a 1163 

suitable representation for in-situ observations. Agricultural and Forest Meteorology, 255, 68-1164 

80. https://doi.org/10.1016/j.agrformet.2017.08.037 1165 

Metzger, S., Ayres, E., Desai, A., Durden, D., Florian, C., Lee, R., et al. (2019). Synthesized 1166 

observations and processes for plot- to landscape-scale research, in: NCAR and NEON Town 1167 

Hall TH13M. Paper presented at the 52nd AGU annual Fall Meeting, San Francisco, U.S.A.  1168 

Metzger, S., Ayres, E., Durden, D., Florian, C., Lee, R., Lunch, C., et al. (2019). From NEON 1169 

field sites to data portal: a community resource for surface–atmosphere research comes online. 1170 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
49 

Bulletin of the American Meteorological Society, 100(11), 2305-2325. 1171 

https://doi.org/10.1175/bams-d-17-0307.1 1172 

Metzger, S., Junkermann, W., Mauder, M., Beyrich, F., Butterbach-Bahl, K., Schmid, H. P., & 1173 

Foken, T. (2012). Eddy-covariance flux measurements with a weight-shift microlight aircraft. 1174 

Atmospheric Measurement Techniques, 5(7), 1699-1717. https://doi.org/10.5194/amt-5-1699-1175 

2012 1176 

Metzger, S., Junkermann, W., Mauder, M., Butterbach-Bahl, K., Trancón y Widemann, B., 1177 

Neidl, F., et al. (2013). Spatially explicit regionalization of airborne flux measurements using 1178 

environmental response functions. Biogeosciences, 10(4), 2193-2217. https://doi.org/10.5194/bg-1179 

10-2193-2013 1180 

Metzger, S., Xu, K., Desai, A. R., Taylor, J. R., Kljun, N., Schneider, D., et al. (2013). Spatio-1181 

temporal rectification of tower-based eddy-covariance flux measurements for consistently 1182 

informing process-based models. Paper presented at the 46th AGU annual Fall Meeting, San 1183 

Francisco, U.S.A.  1184 

Moeng, C.-H., & Rotunno, R. (1990). Vertical-velocity skewness in the buoyancy-driven 1185 

boundary layer. Journal of Atmospheric Sciences, 47(9), 1149-1162. 1186 

https://doi.org/10.1175/1520-0469(1990)047<1149:vvsitb>2.0.co;2 1187 

Montanari, R., Souza, G. S. A., Pereira, G. T., Marques, J., Siqueira, D. S., & Siqueira, G. M. 1188 

(2012). The use of scaled semivariograms to plan soil sampling in sugarcane fields. Precision 1189 

Agriculture, 13(5), 542-552. https://doi.org/10.1007/s11119-012-9265-6 1190 

Munger, J. W., Loescher, H. W., & Luo, H. Y. (2012). Measurement, tower, and site design 1191 

considerations. In M. Aubinet, T. Vesala, & D. Papale (Eds.), Eddy covariance: A practical 1192 

guide to measurement and data analysis (pp. 21-58). Dordrecht, Heidelberg, London, New York: 1193 

Springer. 1194 

Norton, J. (1991). Thought experiments in Einstein's work. In T. Horowitz & G. J. Massey 1195 

(Eds.), Thought Experiments in Science and Philosophy (1st ed., pp. 335). Lanham, USA: 1196 

Rowman & Littlefield. 1197 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
50 

Paleri, S., Desai, A. R., Metzger, S., Mauder, M., Plummer, D. M., & Wanner, L. (2019). 1198 

Mesoscale flux contributions to surface-atmosphere interactions across a heterogeneous mid-1199 

latitude landscape. Paper presented at the 52nd AGU annual Fall Meeting, San Francisoco, 1200 

U.S.A. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/603722 1201 

Palmerino, C. R. (2018). Discussing what would happen: The role of thought experiments in 1202 

Galileo’s dialogues. Philosophy of Science, 85(5), 906-918. https://doi.org/10.1086/699717 1203 

Park, J., & Kim, H. M. (2020). Design and evaluation of CO2 observation network to optimize 1204 

surface CO2 fluxes in Asia using observation system simulation experiments. Atmospheric 1205 

Chemistry and Physics, 20(8), 5175-5195. https://doi.org/10.5194/acp-20-5175-2020 1206 

Park, R. (1998). Value engineering: A plan for invention. Boca Raton, USA: CRC Press. 1207 

Petty, G. W. (2020). Sampling error in aircraft flux measurements based on a high-resolution 1208 

Large Eddy Simulation of the marine boundary layer. Atmos. Meas. Tech. Discuss., 2020, 1-33. 1209 

https://doi.org/10.5194/amt-2020-235 1210 

Pincebourde, S., & Salle, A. (2020). On the importance of getting fine-scale temperature records 1211 

near any surface. Global Change Biology, 26(11), 6025-6027. https://doi.org/10.1111/gcb.15210 1212 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. 1213 

(2019). Deep learning and process understanding for data-driven earth system science. Nature, 1214 

566(7743), 195-204. https://doi.org/10.1038/s41586-019-0912-1 1215 

Santiago, J. L., Dejoan, A., Martilli, A., Martin, F., & Pinelli, A. (2010). Comparison between 1216 

Large-Eddy Simulation and Reynolds-Averaged Navier-Stokes computations for the MUST field 1217 

experiment. Part I: Study of the flow for an incident wind directed perpendicularly to the front 1218 

array of containers. Boundary-Layer Meteorology, 135(1), 109-132. 1219 

https://doi.org/10.1007/s10546-010-9466-3 1220 

Schmid, H. P. (1997). Experimental design for flux measurements: Matching scales of 1221 

observations and fluxes. Agricultural and Forest Meteorology, 87(2–3), 179-200. 1222 

https://doi.org/10.1016/s0168-1923(97)00011-7 1223 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
51 

Schröter, M., Bange, J., & Raasch, S. (2000). Simulated airborne flux measurements in a LES 1224 

generated convective boundary layer. Boundary-Layer Meteorology, 95(3), 437-456. 1225 

https://doi.org/10.1023/A:1002649322001 1226 

Schuepp, P. H., Leclerc, M. Y., MacPherson, J. I., & Desjardins, R. L. (1990). Footprint 1227 

prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer 1228 

Meteorology, 50(1), 355-373. https://doi.org/10.1007/BF00120530 1229 

Sellers, P., Hall, F., Margolis, H., Kelly, B., Baldocchi, D., den Hartog, G., et al. (1995). The 1230 

Boreal Ecosystem-Atmosphere Study (BOREAS): An overview and early results from the 1994 1231 

field year. Bulletin of the American Meteorological Society, 76(9), 1549-1577. 1232 

https://doi.org/10.1175/1520-0477(1995)076<1549:TBESAO>2.0.CO;2 1233 

Sellers, P. J., Hall, F. G., Asrar, G., Strebel, D. E., & Murphy, R. E. (1988). The First ISLSCP 1234 

Field Experiment (FIFE). Bulletin of the American Meteorological Society, 69(1), 22-27. 1235 

https://doi.org/10.1175/1520-0477(1988)069<0022:TFIFE>2.0.CO;2 1236 

Serafimovich, A., Metzger, S., Hartmann, J., Kohnert, K., Zona, D., & Sachs, T. (2018). 1237 

Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance 1238 

measurements and environmental response functions. Atmospheric Chemistry and Physics, 1239 

18(13), 10007-10023. https://doi.org/10.5194/acp-18-10007-2018 1240 

Sogachev, A., Menzhulin, G. V., Heimann, M., & Lloyd, J. (2002). A simple three-dimensional 1241 

canopy – planetary boundary layer simulation model for scalar concentrations and fluxes. Tellus 1242 

B: Chemical and Physical Meteorology, 54(5), 784-819. 1243 

https://doi.org/10.3402/tellusb.v54i5.16729 1244 

Squires, F. A., Nemitz, E., Langford, B., Wild, O., Drysdale, W. S., Acton, W. J. F., et al. (2020). 1245 

Measurements of traffic-dominated pollutant emissions in a Chinese megacity. Atmospheric 1246 

Chemistry and Physics, 20(14), 8737-8761. https://doi.org/10.5194/acp-20-8737-2020 1247 

Steinfeld, G., Letzel, M. O., Raasch, S., Kanda, M., & Inagaki, A. (2007). Spatial 1248 

representativeness of single tower measurements and the imbalance problem with eddy-1249 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
52 

covariance fluxes: Results of a large-eddy simulation study. Boundary-Layer Meteorology, 1250 

123(1), 77-98. https://doi.org/10.1007/s10546-006-9133-x 1251 

Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., et al. (2013). A data-1252 

driven analysis of energy balance closure across FLUXNET research sites: The role of landscape 1253 

scale heterogeneity. Agricultural and Forest Meteorology, 171–172(0), 137-152. 1254 

https://doi.org/10.1016/j.agrformet.2012.11.004 1255 

Sühring, M., Metzger, S., Xu, K., Durden, D., & Desai, A. (2018). Trade-offs in flux 1256 

disaggregation: a large-eddy simulation study. Boundary-Layer Meteorology, 170(1), 69-93. 1257 

journal article. https://doi.org/10.1007/s10546-018-0387-x 1258 

Sühring, M., & Raasch, S. (2013). Heterogeneity-induced heat-flux patterns in the convective 1259 

boundary layer: Can they be detected from observations and is there a blending height? A large-1260 

eddy simulation study for the LITFASS-2003 experiment. Boundary-Layer Meteorology, 1-23. 1261 

https://doi.org/10.1007/s10546-013-9822-1 1262 

Sulkava, M., Luyssaert, S., Zaehle, S., & Papale, D. (2011). Assessing and improving the 1263 

representativeness of monitoring networks: The European flux tower network example. Journal 1264 

of Geophysical Research, 116, G00J04. https://doi.org/10.1029/2010JG001562 1265 

Taylor, G. I. (1915). Eddy motion in the atmosphere. Philosophical Transactions of the Royal 1266 

Society of London, A 215, 1-26.  1267 

Tohidi, H. (2011). Review the benefits of using value engineering in information technology 1268 

project management. Procedia Computer Science, 3, 917-924. 1269 

https://doi.org/10.1016/j.procs.2010.12.150 1270 

Vaughan, A. R., Lee, J. D., Shaw, M. D., Misztal, P. K., Metzger, S., Vieno, M., et al. (2017). 1271 

VOC emission rates over London and South East England obtained by airborne eddy covariance. 1272 

Faraday Discussions, 200(0), 599-620. https://doi.org/10.1039/C7FD00002B 1273 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
53 

Villarreal, S., Guevara, M., Alcaraz-Segura, D., & Vargas, R. (2019). Optimizing an 1274 

environmental observatory network design using publicly available data. Journal of Geophysical 1275 

Research: Biogeosciences, 124(7), 1812-1826. https://doi.org/10.1029/2018jg004714 1276 

Wicker, L. J., & Skamarock, W. C. (2002). Time-Splitting Methods for Elastic Models Using 1277 

Forward Time Schemes. Monthly Weather Review, 130(8), 2088-2097. 1278 

https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2 1279 

Wiens, R. C., Neugebauer, M., Reisenfeld, D. B., Moses, R. W., Nordholt, J. E., & Burnett, D. S. 1280 

(2003). Genesis solar wind concentrator: Computer simulations of performance under solar wind 1281 

conditions. Space Science Reviews, 105(3), 601-626. https://doi.org/10.1023/A:1024474028352 1282 

Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., et al. 1283 

(2009). Improving land surface models with FLUXNET data. Biogeosciences, 6(7), 1341-1359. 1284 

https://doi.org/10.5194/bg-6-1341-2009 1285 

Williamson, J. H. (1980). Low-storage Runge-Kutta schemes. Journal of Computational Physics, 1286 

35(1), 48-56. https://doi.org/10.1016/0021-9991(80)90033-9 1287 

Wolf, B., Chwala, C., Fersch, B., Garvelmann, J., Junkermann, W., Zeeman, M. J., et al. (2017). 1288 

The SCALEX campaign: Scale-crossing land surface and boundary layer processes in the 1289 

TERENO-preAlpine Observatory. Bulletin of the American Meteorological Society, 98(6), 1217-1290 

1234. https://doi.org/10.1175/BAMS-D-15-00277.1 1291 

Wu, D., Wang, Z., Wechsler, P., Mahon, N., Deng, M., Glover, B., et al. (2016). Airborne 1292 

compact rotational Raman lidar for temperature measurement. Optics Express, 24(18), A1210-1293 

A1223. https://doi.org/10.1364/oe.24.0a1210 1294 

Wu, P., Shen, H., Ai, T., & Liu, Y. (2013). Land-surface temperature retrieval at high spatial and 1295 

temporal resolutions based on multi-sensor fusion. International Journal of Digital Earth, 1296 

6(sup1), 113-133. https://doi.org/10.1080/17538947.2013.783131 1297 

Wulfmeyer, V., Turner, D. D., Baker, B., Banta, R., Behrendt, A., Bonin, T., et al. (2018). A new 1298 

research approach for observing and characterizing land-atmosphere feedback. Bulletin of the 1299 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
54 

American Meteorological Society, 99(8), 1639-1667. Article. https://doi.org/10.1175/bams-d-17-1300 

0009.1 1301 

Wyngaard, J. C., & Brost, R. A. (1984). Top-down and bottom-up diffusion of a scalar in the 1302 

convective boundary layer. Journal of the Atmospheric Sciences, 41(1), 102-112. 1303 

https://doi.org/10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2 1304 

Xu, K., Metzger, S., & Desai, A. R. (2017). Upscaling tower-observed turbulent exchange at fine 1305 

spatio-temporal resolution using environmental response functions. Agricultural and Forest 1306 

Meteorology, 232, 10-22. https://doi.org/10.1016/j.agrformet.2016.07.019 1307 

Xu, K., Metzger, S., & Desai, A. R. (2018). Surface-atmosphere exchange in a box: Space-time 1308 

resolved storage and net vertical fluxes from tower-based eddy covariance. Agricultural and 1309 

Forest Meteorology, 255, 81-91. https://doi.org/10.1016/j.agrformet.2017.10.011 1310 

Xu, K., Sühring, M., Metzger, S., Durden, D., & Desai, A. R. (2020). Can data mining help eddy 1311 

covariance see the landscape? A large-eddy simulation study. Boundary-Layer Meteorology, 1312 

Online First. https://doi.org/10.1007/s10546-020-00513-0 1313 

Xu, Z., Ma, Y., Liu, S., Shi, W., & Wang, J. (2016). Assessment of the energy balance closure 1314 

under advective conditions and its impact using remote sensing data. Journal of Applied 1315 

Meteorology and Climatology, 56(1), 127-140. https://doi.org/10.1175/JAMC-D-16-0096.1 1316 

Younker, D. (2003). Value Engineering: Analysis And Methodology. Boca Raton, USA: CRC 1317 

Press. 1318 

Zhang, L., & Pu, Z. (2010). An Observing System Simulation Experiment (OSSE) to assess the 1319 

impact of Doppler Wind Lidar (DWL) measurements on the numerical simulation of a tropical 1320 

cyclone. Advances in Meteorology, 2010, 743863. https://doi.org/10.1155/2010/743863 1321 

Zhang, Y., Ye, X., Wang, S., He, X., Dong, L., Zhang, N., et al. (2020). Large-eddy simulation 1322 

of traffic-related air pollution at a very high-resolution in a mega-city: Evaluation against mobile 1323 

sensors and insights for influencing factors. Atmospheric Chemistry and Physics Discussions, 1324 

2020, 1-16. https://doi.org/10.5194/acp-2020-1168 1325 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 
55 

Ziehn, T., Law, R. M., Rayner, P. J., & Roff, G. (2016). Designing optimal greenhouse gas 1326 

monitoring networks for Australia. Geosci. Instrum. Method. Data Syst., 5(1), 1-15. 1327 

https://doi.org/10.5194/gi-5-1-2016 1328 


