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Abstract

The effectiveness of several metamodeling techniques, viz. the Polynomial
Stochastic Collocation method, Adaptive Stochastic Collocation method, a
Radial Basis Function Neural Network, a Kriging Method and a Dynamic
Kriging Method is evaluated. This is done with the express purpose of us-
ing metamodels to bridge scales between micro and macro-scale models in
a multiscale multimaterial simulation. The rate of convergence of the error
when used to reconstruct hypersurfaces of known functions is studied. For
sufficiently large number of training points, Stochastic Collocation methods
generally converge faster than the other metamodeling techniques, while the
DKG method converges faster when the number of input points is less than
100 in a two-dimensional parameter space. Because the input points cor-
respond to computationally expensive micro/meso-scale computations, the
DKG is favored for bridging scales in a multi-scale solver.
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1. Introduction

1.1. Motivation and Applications

A wide variety of problems in multi-material dynamics including the
passage of a shockwave through a gas laden with particles [1], problems in-
volving crack propagation in heterogeneous materials such as bones [2–5] or
concrete structures [6, 7] involve the intricate coupling of physics at two or
more distinct length and time scales. Further examples of such problems
include modeling of heterogenous explosives [8–11], flow of mixtures includ-
ing sediment transport in river beds [12], flow through fluidized beds [13]
and flow of blood, i.e. plasma carrying cells and macromolecules [14]. In
such systems, the physics of the micro/meso-scale needs to be represented
in macro-scale simulations. This can be achieved by averaging over the het-
erogenous micro/meso-scale. In such volume-averaged macro models [15],
or homogenized models [16–18], micro/meso physics appear in the form of
closure terms in the macro-scale equations.

Process-scale computational typically demand macro-scale governing equa-
tions and simulation techniques. For example, in the problem of a shock
wave interacting with a dusty gas, the number of dust particles is extremely
large. To follow the evolution of the gas-solid mixture, a common practice
is to define a computational particle as an agglomerate of a number of dust
particles and to adopt a mixed Eulerian-Lagrangian viewpoint [17], as in
Figure 1a. Particle paths are traced in a Lagrangian reference frame while
solving the fluid equations in a fixed Eulerian frame. In this approach, the
computational particles are modeled as singular point sources, which cou-
ple with the carrier fluid through momentum exchange modeled via source
terms in the fluid equations [17, 19, 20]. The source terms close the unre-
solved momentum exchange between the fluid and solid (particle) phases,
providing the forces on the particles. For small particle Reynolds numbers
and incompressible flow, the drag on a spherical particle can be determined
analytically using Stokes drag law [21]. A range of empirical drag laws ex-
ist, which incorporate the effect of inertia [22], compressibility [23, 24], slip
coefficients [25], various shape factors [26] and/or viscosity ratio for droplets
[27] for more complex flows. In general, closure models are obtained in the
form of correlations developed in a physical experiment.

Empirical closure models such as drag correlations are only applicable
in limited parameter spaces. To overcome this limitation, high resolution
micro-scale methods that resolve the dynamics at the particle scale, as can be
seen in Figure 1b [28], can be used as surrogates for physical experiments to
obtain closure models connecting the meso-scale physics to the macro-scale.
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In [29] for example, an artificial neural network (ANN) is used to construct
a closure model for particle-laden shocked flow based on computational ex-
periments. The neural network then supplies closure terms (drag force) to
the macro-scale simulation. Further examples of closure terms constructed
from computational experiments using an ANN can be seen in [2–7, 30].

1.2. Bridging Scales in a Multiscale Multimaterial Model

There are three components to the multiscale modeling approach de-
scribed above: a macro-scale solver which computes the interaction of a
large number of particles with a carrier flow, a meso-scale solver, which re-
solves the fine-scale particle-fluid dynamics of a smaller number of particles
and a closure model which calculates the drag and other relevant parameters
from the meso-scale solver for use in the macro-scale solver. Generation of
a closure model derived from an ensemble of full-resolution meso-scale com-
putations requires quantifying the output from the meso-scale dynamics (for
example, drag forces) under a number of different input parameters such as
shock strength, particle loading, particle size distribution, etc.

1.3. Metamodels as Surrogates to Bridge Scales

A metamodel, or a ‘model of a model’ [31], builds a hypersurface from
a limited amount of input/output data and approximates the output over a
much wider parameter space. An excellent overview of metamodeling tech-
niques is given in [32–34]. Several studies have compared metamodels for
reconstructing hypersurfaces from computational experiments. A review of
the challenges and concerns in metamodeling techniques can be found in
[35] and [36]. In addition, Jin et. al. [37] compared the hypersurfaces ap-
proximated by a Polynomial Response Surface Method (RSM), a Kriging
method, a Radial Basis Function Neural Network (RBFANN), and Multi-
variate Adaptive Regression splines (MARS) for 14 different test functions.
Fang et. al. [38] compared the RBFANN method and the RSM method,
with the express purpose of reconstructing hypersurfaces in multi-objective
crashworthiness optimization. However, these studies have been limited to
comparing the quality of approximation only for a given number of input
points, and not over a range of input points.

The choice of a “good” metamodeling technique depends on the appli-
cation and the purpose of the metamodel. Because metamodels are con-
structed from expensive numerical computations in multi-scale modeling
and because the multiscale method should converge with increasing degrees
of freedom, convergence of the metamodels with respect to the number of
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input points for a wide variety of hypersurfaces warrants careful investiga-
tion. This study shows that some metamodelling techniques converge faster
than others only for a certain classes of hypersurface. Furthermore, some
metamodels converge faster when the number of sampled input points is
low, while other metamodels converge faster when the number of inputs is
high. The focus of the current work is to examine the rate of convergence
of the following three classes of metamodels for their suitability in bridging
scales in a multiscale framework:

1. An interpolation method; Stochastic Collocation (PSC) methods [39–
41] - the Polynomial Stochastic Collocation method (PSC) and the
Adaptive Stochastic Collocation Method (ASC) are chosen as repre-
sentative interpolation methods.

2. A fitting method; the RBFANN method [42–44] is the fitting method
considered in the study.

3. A method which first fits a global response surface and then interpo-
lates local departures from the global fit; the Kriging method [45–47]
and the Dynamic Kriging Method (DKG) [48] are chosen in this study.

The methods, represent, in their respective classes as approximators, typical
and state-of-the-art techniques for assimilating and representing the complex
relationships between input parameters and the resultant outputs in a multi-
dimensional parameter space.

The modeling methods are summarized in Section 2. In Section 3, the
evaluation criteria that is used to assess the performance of the metamodels
is discussed, and their convergence behavior is analyzed in Sections 4 and
5 for several analytic functions and existing empirical particle drag models.
To elucidate their metamodeling capabilities, the approximation error of the
metamodels on several known functions is analyzed.

These functions are chosen to highlight the strengths and weaknesses of
each class of metamodels in approximating a wide variety of hypersurfaces;
irregularly sampled data and presence of noise in the input data are also
studied. Empirical drag laws are then considered to illustrate the complex-
ities that will be encountered by the metamodeling techniques in building
a closure model for a full multi-scale solver. Conclusions drawn from the
quantification of the modeling error are discussed in Section 6. To the best
of the authors’ knowledge, no comparison of the rate of convergence of these
classes of metamodels, with the express purpose of ascertaining the suitabil-
ity of the methods as an ingredient in the framework of multiscale modeling,
have been previously performed.
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2. Inter-scale Coupling Methods

The metamodeling techniques are summarized in the following section.
Broadly, the problem of metamodeling is the estimation of the value of
a function f (x) at a point x0 where f (x0) is unknown and the value of
f (x) : Cn → C is only known at certain discrete (distinct) points, xj . Here,
Cn [0,1] is a bounded subspace of Rn, with 0 and 1 being an n-dimensional
vector with all entries 0 and 1 respectively. The points, xj , j = 1, 2, ..., N,
are the “input points” to the metamodel.

2.1. Stochastic Collocation Methods

Stochastic Collocation (SC) interpolation methods [39–41] rely on sparse
grids generated using the Smolyak algorithm [49] to build a multivariate
interpolation method by recursively taking the tensor products of univariate
interpolation formulae. The resultant nodal architecture takes advantage of
the recursive nature of the algorithm to enhance sparsity, i.e. limit the
number of new data points required to improve the order of accuracy of the
interpolation function. In SC methods, the estimated value of the function,
f̃ (x0), is given by [39–41],

f̃ (x0) =

mi1∑
j1=1

. . .

min∑
jn=1

f(xi1j1 , . . . , x
in
jn

)(ai1j1 ⊗ . . .⊗ a
in
jn

), (1)

where i is the level of interpolation, mi is the number of input points required
for level i and aj are the basis functions used in n dimensions. An overview
of the SC methods used in this study follow. For a more detailed derivation
the reader is referred to [39–41].

The convergence of the SC method depends on the choice of basis func-
tion as well as the nature of the hypersurface being interpolated. In this
study, two SC methods are considered, which will be referred to as the Poly-
nomial Stochastic Collocation (PSC) method and the Adaptive Stochastic
Collocation (ASC) method. The input points for PSC method are based
on the the end knots of a Chebyshev polynomial on a Clenshaw-Curtis grid
(Figure 2a) [39–41]. The PSC method is particularly effective in interpo-
lating globally smooth functions because of the fit based on Lagrange poly-
nomials. However, for steeper gradients and highly localized features, the
PSC method displays Gibbs phenomena. Adaptive methods are therefore
required to avoid these spurious oscillations in the solution. The support
nodes in a Clenshaw-Curtis grid are not suited for adaptivity because they
must be predetermined at each level. In the ASC method, input/output
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pairs are therefore located on a Newton-Cotes grid with equidistant nodes
[41] (Figure 2b). The grid is locally refined around points where the hierar-
chical surplus, defined as,

wi
j = f(xi1j1 , . . . , x

iN
jN

)− f̃ i−1(xi1j1 , . . . , x
iN
jN

), (2)

at level i on point j is above a threshold value, ε. Unless otherwise noted,
ε = 0.001 will be used here. Local linear spline functions are used as the
polynomial bases in the ASC method because high order polynomial basis
functions suffer from Gibbs’s phenomenon on uniform grids [41].

A major advantage of SC methods is the availability of an a priori error
estimate. For the PSC method, the interpolation error in the maximum
norm [40, 41] is on the order of

||f(x0)− f̃ i(x0)||∞ = O
(
N−2|log2N |3(n−1)

)
(3)

where n is the number of dimensions and N is the total number of inter-
polation points. In the ASC method, the additional error depends on the
threshold hierarchical surplus value, ε [41],

||f̃ i(x0)PSC − f̃ i(x0)ASC||∞ ≤ N2ε (4)

where N2 is the difference between the full Smolyak sparse grid and the
number of input points in the locally refined grid.

2.2. Artificial Neural Networks Using Radial Basis Functions

A Radial Basis Function Artificial Neural Network (RBFANN) is a fitting
method, particularly suited to function approximation and pattern recogni-
tion [50], which comprises a (finite) set of identical basis functions, called
Radial Basis Functions (RBF) centered around several distinct points in the
input space. In an RBFANN method, the estimated value of the function
at a point x0, is given by [42]

f̃ (x0) =
M∑
k=1

λkφ (x0,xck ; θck) (5)

where λk is the weight associated with each of the basis functions φ (x0,xck ; θck),
while the parameter xck is the position of the basis function and the param-
eter θck is the shape parameter. A typical choice of the basis function is a
Gaussian φ (x0,xck ; θck) = exp

(
−d2ck/θ

2
ck

)
where dck = ‖x0 − xck ‖, is the
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Euclidean Norm; this basis function has non-compact support [44, 51–53].
If the Gaussians are equally spaced, they form a set of Reisz Bases for the
input space [54].

The weights in (5) are given by

λ = H†f (6)

where H = Hjk = φ (‖xj − xck ‖ ; θck) ; j = 1, 2, ..., N , k = 1, 2, ...,M, with N
being the number of inputs and M the number of Gaussians used. H† is the

pseudoinverse of the interpolation matrix, λ =
⌊
λ1 λ2 · · · λM

⌋T
and

f =
⌊
f (x1) f (x2) · · · f (xN )

⌋T
. Equation (6) is thus the least-squares

solution to the overdetermined system of equations given by Hλ = f . Be-
cause H is a dense matrix and often ill-conditioned [55, 56], a singular value
decompostion of the interpolation matrix is performed to obtain H†. The
determination of optimal parameters, M, xck and θck of an RBFANN is a
subject of active reseach [42, 57–64]. In the current approach the param-
eters are determined using an unsupervised training process (which means
that a non-linear optimization algorithm is not performed to determine the
parameters). The RBF algorithm involves the following stages.

1. Determination of M: In order to avoid “memorizing” [65] the inputs,
in a typical RBFANN, the number of RBFs is chosen to be less than
the number of inputs. However, in the context of a multiscale frame-
work, RBFANN is used to “learn” from fully-resolved micro-scale com-
putational experiments. Since such computations are expensive, the
method must create a hypersurface from as few inputs as possible.
The number of Gaussians are therefore chosen to be approximately
1.1 times the number of inputs.

2. Determination of xck , k = 1, 2, ...,M . The RBFs are initially uni-
formly distributed in the domain and are updated by a K-means clus-
tering algorithm [66] to avoid the possibility of an empty cluster in
case of non-uniform inputs.

3. Determination of the shape parameter, θck , of the RBFs: The shape
parameter is chosen to be equal to the mean distance of an RBF to its
five nearest neighboring RBF such that they span the entire domain
of the input space [66].

2.3. Kriging methods

The third class of metamodels studied are derived from Kriging methods,
which have their origin in mining and geostatistical applications involving
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spatially and temporally correlated data [67, 68]. Kriging methods combine
a global (polynomial) model which fits to the given response surface, while
the local departures from the global fit are estimated using semi-variogram
models [45]. The resulting approximation interpolates the sampled input
points. In a Kriging method, the estimated value of the function, denoted
by f̃ (x0) can be expressed as [46],

f̃ (x0) =

r∑
l=0

λlpl (x0) + Z (x0) (7)

where pl (x0) denotes the l-th order term in a polynomial basis functions of
maximum order r and λl is the least-squares solution to the set of normal
equations f̃ (xj) = λlpl (xj) , j = 1, 2, ..., N [48]. In Equation(7), Z (x0) is
a realization of a Gaussian random process with zero mean, E [Z (xj)] = 0
and a covariance structure, E [Z (xj)Z (xq)] = σ2Rjq, j, q = 1, 2, ..., N where
σ2is the process variance, and Rjq is the correlation model of the process
[69] . The correlation model, Rjq is often chosen to be of the form [69]

R = Rjq = R (θ,xj ,xq) =

n∏
k=1

γk (θk, dk) , (8)

with a shape parameter θ where dk = (xkj − xkq) , k = 1, 2, ..., n. An ex-

ample of such a correlation model is a Gaussian model, where γk = e−θkd
2
k ,

k = 1, 2, ..., n. Although any value of θ would provide an interpolation for-
mula, the optimal value of θ in (8) is selected to maximize the following
log-likelihood function of the model parameters [48]

l = −N
2

ln
[
2πσ2

]
− 1

2
ln [|R|]− 1

2σ2
(f −Pλ)T R−1 (f −Pλ) (9)

where f =
⌊
f (x1) f (x2) · · · f (xN )

⌋T
, λ =

⌊
λ0 λ1 ... λr

⌋T
and

P = Pjl = pl (xj). In the current work, the Kriging method with a first-
order mean structure and a Gaussian correlation model is applied using a
MATLAB code, DACE [47].
An improved version of Kriging algorithm called the Dynamic Kriging Method
with adaptive sampling (DKG) [48, 69] has been implemented as well. The
detailed algorithm can be found in [48], the key aspects of the algorithm are
summarized here.

1. The DACE code uses a modified Hooke and Jeeves algorithm [47] to
find the optimum value for θ. However, this method often fails to
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provide a global optimum of θ and has therefore been replaced in the
DKG method by a Global Pattern Search (GPS) algorithm [69].

2. The choice of the correlation model and the mean structure depends on
the hypersurface to be approximated [70] and is not known a priori. In
the DACE code, the order of the mean-structure, r, and the correlation
function are selected by the user a priori. However, the DKG method
compares between three mean structures corresponding to r = 0, 1 and
2, using a Cross-Validation (CV) error estimate [48]. The method also
evaluates seven different correlation models, as listed in Table (1) and
selects the best one, i.e. the model which maximizes the likelihood
function.

3. In a typical Kriging model, samples are either supplied by the user
heuristically or are supplied by a sampling strategy like the Latin Hy-
percube Sampling method [71, 72] or Latin Centroidal Voronoi Tes-
sellation (LCVT) method [73].These methods usually generate input
points in the domain uniformly. However, the Dynamic Kriging model
is integrated with an adaptive sampling strategy, which selects more
samples at highly non-linear portions of the hypersurface, thus aiming
to obtain a better approximation using a parsimonious distribution of
input points. The sample insertion criterion is described in detail in
[69].

3. Evaluation of Techniques for Metamodeling

In order to be used for the generation of closure models in a multiscale
modeling framework, it is desirable that the metamodels described in the
previous sections satisfy certain restrictions on the error behavior and model
construction. These include:

1. Parsimonious representation: Computational experiments are expen-
sive to perform and a single high-resolution realization can take several
hours to compute, even on multiprocessor architectures. Thus, the
metamodel should be accurate and converge rapidly when supplied
with information obtained from a minimum number of high resolution
simulations (input data points).

2. Monotonic convergence: The inclusion of additional meso-scale simu-
lations must result in improved approximation of the closure model.
Because the closure model will not be known a priori, monotonic con-
vergence is required so the modeling error can be estimated and ad-
ditional micro-scale computations can be performed to improve the
accuracy of the metamodel.
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3. Multidimensional representations: Since multidimensional parameter
spaces are expected, the method must be easily extendable to multiple
input dimensions without suffering from the “curse of dimensionality”,
i.e. the number of input points should not increase exponentially with
the increase in the dimension of the input space. This consideration
obviates the use of methods like Lagrange interpolation and discour-
ages the use of methods which operate on a dense grid of input points.

4. Flexibility and Re-use: Since the metamodelling technique relies on
expensive high resolution simulations as inputs, previous results must
be utilized when expanding the parameter space. In addition, if the
parameter space is expanded to include a larger domain of approxima-
tion, the augmented parameter space and corresponding data values
must be included in generating an updated hypersurface. This be-
comes difficult, for example, when a metamodelling approach relies
on fixed collocation points (for example, Gauss points in the computa-
tional domain, zeroes of a Chebyshev polynomial, etc) for constructing
closure models because additional interpolation would be needed to fit
data onto the predefined nodes.

5. Treatment of noisy data: Since numerical noise is expected in the
meso-scale results, it is preferred to have the metamodel filter noisy
data to build a smooth approximation without adding excessive filter-
ing errors.

4. Analysis of Convergence Behavior of the Metamodeling Tech-
niques for Analytical Functions

To evaluate and compare the metamodels in light of the above mentioned
criteria, hypersurfaces for several predetermined functions are generated and
the approximations are compared to the exact functions. The method of
comparing the metamodels is as follows:

1. Training the metamodels: A number (say N) of input points of a given
function are provided to the metamodels as training points. These
sample inputs are spaced at regular intervals along each axis through-
out the parameter space for the RBFANN and the Kriging method.
Because the input points of a PSC method are predetermined for each
level of refinement, a comparable number (∼ N) of nodal collocation
points are provided as inputs for the PSC method. In the DKG and
ASC methods, the sample insertion criteria is adjusted such that when
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the maximum number of samples reach N , no further inputs are gener-
ated and the training process is terminated. Thus, the approximation
of the metamodels are evaluated at a comparable number of training
points.

2. Building the hypersurface to test accuracy: Once trained, the meta-
model is used to predict the value of the function at S = 100 × 100
uniformly distributed points in the domain of approximation.

3. Evaluating the Approximation Error and the Rate of Convergence: Be-
cause metamodels are constructed from analytical functions, it is pos-
sible to compare the predicted values of the metamodels with the exact
values of the function at these S points. In order to quantify the ac-
curacy of approximation at these points, a normalized sum-of-squares
error is calculated:

εL2 =

√√√√√√√√
S∑
j=1

(
f (xj)− f̃ (xj)

)2
S∑
j=1

(f (xj))
2

, (10)

where f (xj) is the exact value of the function at the point xj and

f̃ (xj) is the value approximated by a metamodel. The error, εL2 , is
calculated and plotted for different values of N .

4. Local Error Estimation: Since the error measure εL2 is a global mea-
sure of approximation errors, a normalized local error field, δ (xj),
defined as

δ (xj) =
f (xj)− f̃ (xj)

1
S

S∑
j=1

f (xj)

, (11)

is calculated to quantify the local approximation error of a hypersur-
face by a metamodel at the points xj , j = 1, 2, ..., S. Representative
plots showing the contours of the local error field for a given value of
N are also shown in the subsequent section.

For the purpose of illustration, representative contours of the hypersurfaces
and local error plots are shown for N = 144 points.

4.1. Harmonic Test Function

The first function considered is a smooth harmonic function, given by

f(x, y) = sin(2πx) cos(4πy) + 2, (12)
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where x and y range from 0 to 1.
As the convergence plot in Figure 3 shows, if the number of input points

is below 60, the hypersurface is best approximated by the RBFANN and
DKG methods. However, as the number of input points increases, the rate
of convergence of the RBFANN method decreases. The value of the shape
parameter, θcj , decreases as the number of input points increases for the
RBFANN method. The system of equations defined by (6) becomes ill-
conditioned and the SVD solver essentially “filters” out higher frequencies
of the interpolation matrix. As the higher frequencies are removed, the ac-
curacy of the representation decreases and the rate of convergence decreases
if the number of inputs approaches and exceeds 100 points.

The error in approximation by the Kriging method, applied using the
DACE code, does not decrease monotonically, evinced by the spikes seen in
Fig. 4. The rate of convergence changes when the number of input points
changes from 64 to 81 and from 81 to 100. To further investigate this,
the value of the shape parameter θ, as estimated in the Kriging Method is
examined and compared with that obtained by the DKG method in Table
2. The value of θ for the Kriging method undergoes sharp changes when
the number of input points change from 64 to 81 and from 81 to 100. This
corresponds to those points in Figure 3 when the rate of convergence of the
Kriging method also changes. In comparison, the shape parameter estimated
by the DKG method decreases uniformly (Table 2) and the error in the
DKG method also decreases uniformly (Figure 3). This numerical example
illustrates the advantage of the GPS algorithm for determining the optimum
value of θ over the modified Hooke and Jeeves algorithm used in DACE.

The error in approximation of the PSC method is initially constant, as
shown in Fig. 3, and decreases as the number of input points exceeds 30,
finally decreasing spectrally when the number of inputs increases beyond
60. In contrast, the error of approximation of the ASC method does not
change for any given number of input points. The sinusoidal variation of
the function along the x axis is satisfactorily reconstructed, but the cosine
waves in the y direction are not recognized all together, as is shown in the
approximation of the hypersurface by the ASC method in Fig. 4. The ASC
method initially operates on a mesh where the collocation nodes lie along
the boundaries and the centerlines of the input domain (as seen in Figure
2). Because of the adequate representation of the sinusoidal values at the
boundary and along the centerlines, the hierarchical surplus falls below the
threshold value and input nodes are not successively refined on the interior
of the domain. Hence, the hypersurface reconstructed by the ASC method
is constant with respect to the coordinates along the y axis causing an
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aliasing error. The sinusoidal variation of the function along the x axis is
satisfactorily reconstructed, but the cosine waves in the y direction is not
predicted by the ASC method.

To appropriately characterize the convergence of the ASC on a smooth
function, the aliasing error is eliminated by introducing slight phase-shifts
in the sine and cosine waves of the function,

f(x, y) = sin(2πx+ 0.25) cos(4πy + 0.5) + 2, (13)

where x and y range from 0 to 1. The aliasing error seen in Fig. 4 does
not appear in this function because the boundaries of the domain no longer
trace a simple sine wave. The Newton-Cotes grid in Figure 2 does not line
up directly with the sine wave so grid refinement occurs on the interior of the
domain away from the centerlines and the sum-of-squares error converges
per the theoretical expectation when the number of input points is greater
than 20, which is shown in Figure 5.

4.2. Hypersurface Reconstructed from Irregularly Spaced Input Points

In a computational experiment, it is possible to specify the input points
in several different ways. Input points can be specified at the nodes of a
structured grid, i.e. at strictly regular intervals along each axis. In sampling
methods like Latin Hypercube Sampling Method [71], LCVT method [73]
input points are distributed uniformly along the domain, although the points
may not be necessarily specified at strictly regular intervals along each axis.
The resulting input grid, in such a case, is unstructured. Because in a
multiscale model it is not always possible or advisable to perform meso-
scale experiments at strictly regular intervals in the parameter space, the
input grid of a metamodel may not necessarily be structured. Therefore,
a metamodeling approach which is fairly insensitive to the distribution of
input points is preferable. In this section, a comparison is made between
the hypersurfaces created by regularly spaced input points and irregularly
spaced input points using the RBFANN and Kriging methods. Note that
the PSC method is trained from inputs placed at specific locations in the
input domain (see Fig 2), while the ASC method and the DKG method
are integrated with a sampling strategy and are therefore not tested in this
section.

To train the RBFANN methods and the Kriging methods, the harmonic
function defined by Equation (12) is considered. Here, the input points
are chosen at random within the domain. Because the location of a given
number of input points in the domain is not unique, five such random input
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distributions are used to calculate the average normalized sum-of-squares
error, given by Equation (10). This is then compared to the error calculated
from the approximation of a structured grid of training points. Figures
6a and 6b show the rate of convergence of the error for the RBFANN and
Kriging methods respectively.

The convergence rates shown in Figures 6a and 6b demonstrate that
structured grids give the lowest error for the given harmonic function. How-
ever, the convergence of the Kriging Method trained with an unstructured
grid of sample points closely follows the convergence when using a struc-
tured grid of input points. However, if the number of input points increases
beyond 81, the rate of convergence of the RBFANN method trained with
regular input points is significantly different from that trained with random
input points. Because the current architecture of the RBFANN uses more
Gaussians than the number of input points, the RBFANN is sensitive to the
distribution of input points. Thus, the rate of convergence of the current
RBFANN model not only depends on the number of training points, but also
on the location of the input points in the domain. Unless otherwise men-
tioned, an RBFANN method will be trained with regularly spaced inputs in
subsequent sections of the present work.

4.3. Reconstruction of a Hypersurface from Noisy Data

Noise is unavoidable in solutions obtained from computational and phys-
ical experiments. While it is possible to filter out noise from any approxi-
mation obtained from a metamodel with a pre/post processing algorithm,
additional errors may be added if a filter is used. Therefore, a metamodel
that is relatively insensitive to noise is preferred.

To analyze the metamodels’ response to numerical noise, each of the
metamodels is given a fixed number of inputs from Equation (13) and a
(white) noise of maximum amplitude 0.1 is superposed onto the training
samples. The metamodels are then used to predict the hypersurface of
Equation (13). The contour plots for each of the reconstructed hypersurfaces
are shown in Figure 7.

The hypersurface predicted using the RBFANN method is noise-free.
Because an RBFANN filters out all frequencies beyond a certain limit [54],
it can filter out the noise components most effectively. As seen in Figure 7,
the hypersurfaces predicted using the SC methods are noisy because the PSC
and ASC are interpolation methods in which the reconstructed hypersurface
must pass through all the values given at the training points exactly. Also,
the Kriging and DKG methods have an inherent mean-structure which filters
out the noise partially, but the process of minimization of the departure from
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the local fit result in an interpolation. Therefore, as can be seen in Figure
7, the noise from the training data is retained in the hypersurface predicted
by these methods. Unless otherwise mentioned, the training data in the
subsequent sections of the work is noise-free.

4.4. A Radially Symmetric Steep Gradient Test Function

The previous examples provided valuable insight into the convergence
of the metamodels for a smooth function. To study the response of the
metamodels to a hypersurface with steep gradients localized in a region in
the interior of the input domain, consider the function,

f(x, y) =


C1

2
√
0.4

ln

∣∣∣∣√x2+y2+√0.4√
x2+y2−

√
0.4

∣∣∣∣ if
√
x2 + y2 ≤

√
0.3,

C2

2
√
0.2

ln

∣∣∣∣√x2+y2−√0.2√
x2+y2+

√
0.2

∣∣∣∣ if
√
x2 + y2 >

√
0.3,

(14)

where

C1 =
16
√

0.4

ln
∣∣∣√0.3+√0.4√

0.3−
√
0.4

∣∣∣
C2 =

16
√

0.2

ln
∣∣∣√0.3−√0.2√

0.3+
√
0.2

∣∣∣
and x and y range from 0 to 1. This function is an integral of Equation
(65) from [41]. The contours of f (x, y) = constant are radially symmetric
with respect to the origin. Steep gradients arise along the arc

√
x2 + y2 =√

0.3, while the hypersurface varies more slowly as the distance from the arc
increases. The exact hypersurface is shown in Fig. 9a.

Figure 8 shows the convergence of the errors of the metamodels with
respect to the number of input points. In the convergence plot (Figure 8),
the convergence rates for the metamodels are similar if the number of in-
put points is below 900. However, the magnitude of the error is higher for
the SC methods because the nodes are concentrated along the boundaries
and centerlines of the domain, while the regions of high gradient are ra-
dially symmetric. The input points are therefore not collocated with the
highly non-linear regions of the hypersurface and the local features of the
hypersurface are therefore not well resolved. The maximum values of the
function are underrepresented when using the SC methods and oscillations
occur. These oscillations increase as the distance between a point and the
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arc
√
x2 + y2 =

√
0.3 decreases resulting in the corresponding higher local

errors seen in Figures 10a and 10b.
Figure 9 shows that the hypersurfaces reconstructed by the RBFANN,

Kriging and the DKG methods also display spurious oscillations, but these
oscillations are smaller compared to those seen in the PSC reconstruction.
When the number of input points is greater than 900, the PSC method con-
verges exponentially because a larger number of input nodes fall on the arc
containing the steeper gradients. If the number of input points increases
beyond the scope of this study (> 103), the ASC method converges expo-
nentially because of the increased number of nodes near the steep gradients.
An example of the node distribution for such a case (i.e. N > 103) is shown
in Figure 11.

5. Analysis of Convergence Behavior of the Metamodeling Tech-
niques for Empirical Drag Models

In addition to specific analytical functions designed to quantify the meta-
models’ approximation error on smooth harmonic functions and steep inte-
rior gradients, empirical drag models are considered. The hypersurfaces of
these functions are expected to be similar to those of the closure models
that the metamodeling techniques would be required to approximate in a
multiscale modeling framework.

5.1. Boiko’s Model for Drag on a Particle in a Shocked Flow

The first drag model considered is a model proposed by Boiko et. al.
[74], and is given by

CD =

(
0.38 +

24

Rep
+

4

Rep1/2

)(
1 + e

− 0.43

M4.67
p

)
, (15)

This function includes the effects of particle Reynolds number, Rep = |vf −
vp|dp/ν, and relative Mach number, Mp = |vf − vp|/

√
Tf , in the drag coeffi-

cient equation. The model is limited to relative Mach numbers of Mp ≤ 1.2
and Reynolds numbers of Rep ≤ 1×104. However, for the present study, the
model is considered to apply for 0.1 ≤Mp ≤ 3 and 100 ≤ Rep ≤ 10000. The
macro-scale EL code in [17, 19, 20] uses this empirical function to compute
the particle drag coefficient.

The drag predicted by this model has two sharp zones of transition: at
transonic Mach numbers ranging from 0.5 . Mp . 1.5 and at Rep . 200
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when the flow changes from viscous Stokes’ flow to an inertia dominated
flow. The contour of the hypersurface of this figure is shown in Figure 14a.

The rate of convergence of the error of the metamodels with respect to
the number of input points is shown in Figure 12. The function is most ac-
curately represented by the SC methods. This is because in the SC methods
collocation points are more concentrated close to the boundary ( Figure 2).
The sharpest transition region in the hypersurface in 14a lies along the low
Rep boundary. Because the concentration of nodes in the SC methods coin-
cide with the highly non-linear regions of the hypersurface, the SC methods
most accurately represent the function. It can be further observed from
Figure 12 that among the SC methods, when the number of input points
is below 400, the PSC method best approximates the hypersurface. This is
because the high order global basis functions in the PSC method capture
the flatter portions and smooth transition regions more accurately than the
lower order local basis functions used by the ASC. If the number of input
points is increased beyond 400, the ASC method is more accurate (Figure
12). This is because of the adaptive refinement based sampling strategy in
the ASC method, which results in higher number of input points in the two
transition zones and the ASC method converges exponentially.

As shown in Figure 12, the magnitude of the error of approximation by
the RBFANN, Kriging and DKG methods is higher than the SC methods.
In the RBFANN and the Kriging method, the predicted hypersurface shows
spurious oscillations (from Figure 15). The magnitude of local error is high-
est for the Kriging method and the RBFANN method, while the magnitude
of local error is higher for the DKG method than the SC methods. An impor-
tant observation in Figure 15 that unlike the SC methods, the hypersurface
obtained from the other metamodels is most errorneous along the transition
region from low Re to high Re. This implies that unlike the SC methods,
the number of input points for the other metamodeling techniques in these
regions is not adequate to represent the sharp transition from low Re to high
Re. Figure 13 shows the training points of the DKG method in. The number
of training points is uniformly distributed throughout the domain, unlike the
SC methods. Similarly, the RBFANN methods and the DKG methods are
also trained using regularly spaced training points and hence the error of
approximation of the RBFANN method, the Kriging method and the DKG
method is higher than the SC methods, (Figure 12 and Figure 15).

5.2. Loth’s Model for Drag on a Particle in a Shocked Flow

To further investigate the ability to capture steep gradients in the interior
of the domain, consider the drag model proposed by Loth et. al. [24]. This
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model also corrects for high particle Mach and Reynolds numbers but over
a wider range, Rep ≤ 1× 105 and Mp ≤ 5,

CD =
24

Rep

(
1 + 0.25Re0.687p

)(
1.0− 0.258C

1.0 + 514G

)
+

0.42C

1 + 4.25× 104Re−1.16p G
,

(16)
where C and G are defined as,

C =


5
3 tanh(3.0 log(Mp + 0.1)) if Mp ≤ 1.45,

2.044 + 0.2e
−1.8

(
log

(
Mp
2

))2

if Mp > 1.45,
(17)

G =

{
1.0− 1.525M4

p if Mp ≤ 0.89,

0.0002 + 0.0008 tanh (12.77 (Mp − 2.02)) if Mp > 0.89,
(18)

The function produces very steep gradients arranged in a series of steps in
the interior of the domain. The contour of the hypersurface of Equation
(16) is shown in Figure 17a.

As shown in Figure 16, most of the metamodels show a first order con-
vergence rate in the normalized sum-of-squares error, but the ASC method
converges exponentially. Similar to the drag model discussed in the previous
section, because the adaptive refinement algorithm in the ASC adds addi-
tional training nodes at highly non-linear regions in the hypersurface, the
ASC method converges exponentially.

As opposed to the function given by Equation (15), many of the complex
characteristics of Loth’s model lie in the interior of the domain as can be
seen in 17a. But from Figure 2, it can be seen that the number of nodes
of the PSC method are scarce in the interior of the domain. This lack of
training data along with the requirement that the approximation be exact
on the training nodes causes spurious oscillations in regions of high gradient
(Figure 17). Because the Kriging and DKG methods also interpolate the
hypersurface through the available inputs, spurious oscillations can also be
seen in the hypersurface predicted by the Kriging method and the DKG
method, and is shown in Figure 17. The oscillations in the DKG method
is more localized than the Kriging method. To investigate this, the correle-
tion model used in the DKG method is studied, and it is found that for
any given number of input points, the DKG method approximated the hy-
persurface of Equation (16) using a General Exponential correletion model.
The correlation model used in the Kriging method is a Gaussian model, but
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a General Exponential correlation model is used in the DKG method. A
General Exponential model is more localized than a Gaussian and the use
of the General Exponential correlation model approximates the localized
features of the highly non-linear portions of the hypersurface. Because the
RBFANN method also uses non-compact Gaussian basis functions, spuri-
ous oscillations can also be seen in the hypersurface approximated by the
RBFANN in Figure 17. Furthermore, the ASC model also uses local basis
functions and adaptively places additional nodes near the higher gradient
regions of the input domain thus eliminating these oscillations in Figure 17.

5.3. Tong’s Model for Drag on a Particle in a Shocked Flow

Tong et. al. [26] have extended Loth’s model [24] to include variations
of particle shape and particle volume fraction, α,

CD = Cda + 0.5048α

(
1.0 +

34.8

Re0.5707p

)4

+ 0.9858α

(
1.0 +

34.8

Re0.5707p

)
, (19)

where Cda is the drag coefficient calculated using (16). This model illustrates
the complex dependence of the particle drag coefficient on many different
parameters, including the Knudsen number (set equal to 10 here), Mp (set
to 1 in here), Rep (varied) and α (varied). The hypersurface is shown in
Figure 20a.

The convergence of the metamodels with respect to the number of input
points is shown in Figure 19. The PSC method and the DKG method ap-
proximate the hypersurface most accurately. Despite the higher concentra-
tion of input nodes in the low Rep, high α boundary, the local basis functions
in the ASC method do not approximate the function as well. The RBFANN
method, employing Gaussians as basis-functions, over-fits the nearly linear
variation of the drag coefficient at higher volume fraction and lower Reynolds
number. Therefore, as is shown in the contour plots of the reconstructed
hypersurfaces in Figure 20, oscillations arise when the RBFANN method is
used to build the approximation. Similar to the case of the harmonic func-
tion in Section 4, the Kriging model constructed using the DACE code does
not converge monotonically. The value of the shape parameter as calculated
using the Kriging method and the DKG method are compared against the
number of input points in Table 3. The value of the shape parameter, θ, in
the Kriging method is equal to 0.76655 for less than or equal to 400 input
points but increases sharply to θ = 20 past 400, where a non-monotonic
jump is seen in the convergence plot in Figure 19. For the DKG method,
the value of θ monotonically increases, indicating that the correlating model
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becomes more localized with an increased number of input points. This
numerical example also illustrates the advantage of the GPS algorithm [48]
for determining the optimum value of θ over the modified Hooke and Jeeves
algorithm use in DACE.

6. Conclusions

The performance of five metamodeling techniques, the PSC, ASC, RB-
FANN, Kriging and DKG methods, is compared for use as the coupling
algorithm or a metamodel in a multi-scale solver. The magnitude and the
rates of the representation error of each of these methods has been charac-
terized by their sum-of-squares error from Equation (10) and the local errors
(11).

For a large number of training points, the SC methods generally approx-
imate most of the hypersurfaces most acurately. In particular, the adaptive
refinement of the ASC method around steep gradients on the interior of
the input domain captures the complex regions of high gradient in the hy-
persurfaces of the empirical drag functions tested. But the number of input
points required to accurately predict a hypersurface using the SC methods is
roughly equal to or more than 100 for most of the hypersurfaces. Because in
a multiscale modeling framework, input points correspond to high resolution
mesoscale computations, generation of such a high number of input points
is expensive. Additionally, both the PSC and ASC methods are constructed
using a strict predetermined nodal architecture and lack the flexibility of the
Kriging and the RBFANN methods with respect to placement of input data.
For example, with the SC-based methods, expanding the parameter space
would entail discarding the input from a previous set of data or introducing
additional interpolation errors. This would result in waste of computational
time and resources when an expanded parameter space is required.

The input points of the RBFANN and the Kriging methods can be ran-
domly placed throughout the domain with little or no effect on the conver-
gence of the metamodel, as seen in Section 4.3. Because of this flexibility,
the parameter space can be expanded to include a larger domain of approx-
imation while continuing to utilize previous data. However, the RBFANN
and Kriging methods have the highest sum-of-squares error in approximat-
ing most of the functions tested and do not converge at as high of rates as
the SC methods. Additionally, the Kriging method using the DACE code
does not converge monotonically in some cases. The parameter estimation
technique integrated within the DACE code (i.e. the use of modified Hooke
and Jeeves algorithm) leads to the selection of a local extremum value of
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the shape parameter θ as the global extremum in the maximum likelihood
estimation process.

The non-monotonic convergence of the Kriging method is circumvented
in the DKG method by a Global Pattern Search (GPS) algorithm using
a maximum likelihood estimator with a penalty function and by the use
of dynamic selection of correlation models and mean structure. The DKG
method is not only monotonically convergent for all the functions consid-
ered in the current work, but at roughly 100 input nodes, has either the
lowest sum-of-squares error or is close to the lowest (i.e. relative to the SC
methods). Therefore, metamodels may be built using less than 100 training
points using the DKG method. Thus, for the functions approximated in
the current work, the DKG method is the optimal choice to serve as the
coupling algorithm for the multi-scale solver.
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(a) (b)

Figure 1: Two-dimensional examples of the (a) macroscale interaction of a large number
of modeled particles with a right running normal shock and (b) full resolution meso-scale
computation of a small number of particles interacting with a right running normal shock.
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(a) (b)

Figure 2: The distribution of nodes from a two-dimensional fifth level Smolyak Sparse
Grid based on (a) Chebyshev polynomial end knots and (b) a uniform Newton-Cotes grid.
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Figure 3: Error plot showing the convergence rates on approximating the smooth harmonic
test function from (12).
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Figure 4: The hypersurface of the function given by (12) as approximated by the ASC
method.
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Figure 5: Error convergence of the approximation of the shifted harmonic test function
from (13) using an ASC method.
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Figure 6: Error plot showing the convergence rates on interpolating the harmonic test
function from Eqn. 12 using (a) an RBF method and (b) a Kriging method.
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(a) PSC (b) ASC (c) RBFANN

(d) Kriging (e) DKG

Figure 7: Representative hypersurfaces for the noisy shifted harmonic function using (a)
a PSC method, (b) an ASC method, (c) an RBF ANN, (d) a Kriging and (e) a DKG
method.
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Figure 8: Error plot showing the convergence rates on approximating the test function
from (14) using a PSC method, an ASC method, an RBFANN, a Kriging method and the
DKG method.
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(a) (b) PSC (c) ASC

(d) RBFANN (e) Kriging (f) DKG

Figure 9: The (a) exact contours and representative contour plots for the test function
from (14) using (b) a PSC method, (c) an ASC method, (d) an RBF ANN, (e) a Kriging
method and (f) the DKG method.
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(a) PSC (b) ASC (c) RBFANN

(d) Kriging (e) DKG

Figure 10: Local error plots for the approximation of the test function from (14) using (a)
a PSC method, (b) an ASC method, (c) an RBF ANN, (d) a Kriging method, and (e) the
DKG method.
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Figure 11: Locations of nodes in a 12th level Smolyak sparse grid, refined adaptively
using hierarchical surpluses with a maximum error of ε = 0.01, interpolating the function
in (14).
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Figure 12: Error plot showing the convergence rates on approximating the drag model of
Boiko et. al. [74] using a PSC method, an ASC method, an RBFANN, a Kriging method
and the DKG method.
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Figure 13: The distribution of training points in the DKG method
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(a) (b) PSC (c) ASC

(d) RBFANN (e) Kriging (f) DKG

Figure 14: The (a) exact contours and representative contour plots for the drag coefficient
of Boiko et. al.[74] using (b) a PSC method, (c) an ASC method, (d) an RBF ANN, (e)
a Kriging method and (f) the DKG method
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(a) PSC (b) ASC (c) RBFANN

(d) Kriging (e) DKG

Figure 15: Local error plots for the approximation of drag model of Boiko et. al. [74]
using (a) a PSC method, (b) an ASC method, (c) an RBF ANN, (d) a Kriging method
and (e) the DKG method.
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Figure 16: Error plot showing the convergence rates on approximating the drag model of
Loth [24] using a PSC method, an ASC method, an RBFANN, a Kriging method and the
DKG method.
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(a) (b) PSC (c) ASC

(d) RBFANN (e) Kriging (f) DKG

Figure 17: The (a) exact contours and representative contour plots for the drag coefficient
of Loth [24] using (b) a PSC method, (c) an ASC method, (d) an RBFANN method, (e)
a Kriging method and (f) the DKG method.
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(a) PSC (b) ASC (c) RBFANN

(d) Kriging (e) DKG

Figure 18: Local error plots for the approximation of drag model of Loth [24] using (a) a
PSC method, (b) an ASC method, (c) an RBFANN method, (d) a Kriging method and
(e)the DKG method.
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Figure 19: Error plot showing the convergence rates on approximating the drag model of
Tong et. al. [26] using a PSC method, an ASC method, an RBFANN, a Kriging method
and the DKG method.
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(a) (b) PSC (c) ASC

(d) RBFANN (e) Kriging (f) DKG

Figure 20: The (a) exact contours and representative contour plots for the drag coefficient
of Tong [26] using (b) a PSC method, (c) an ASC method, (d) an RBFANN, (e) a Kriging
method and (f) the DKG method.
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(a) PSC (b) ASC (c) RBFANN

(d) Kriging (e) DKG

Figure 21: Local error plots for the approximation of drag model of Tong et. al. [26] using
(a) a PSC method, (b) an ASC method, (c) an RBF ANN, (d) a Kriging method and (e)
the DKG method.
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Correlation Function γk (θ, dk)

Exponential exp (−θk |dk|)
General Exponential exp

(
−θk |dk|θn+1

)
; 0 < θn+1 ≤ 2

Gaussian exp
(
−θkd2k

)
Linear max{0, 1− θk |dk|}

Spherical 1− 1.5ξk + 0.5ξ3k, ξk = min {1, θk |dk|}
Cubic 1− 3ξ2k + 2ξ3k, ξj = min {1, θk |dk|}

Spline

1− 1.5ξ2k + 30ξ3k for 0 ≤ ξk ≤ 0.2

1.25 (1− ξk)3 for 0.2 < ξk < 1
0 for ξk ≥ 1

; ξk = θk |dk|

Table 1: List of correlation functions
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Number of Inputs θ(Kriging) θ(DKG)

36 6.13 0.8898

64 6.13 0.4523

81 0.322 0.3741

100 0.161 0.3683

144 0.161 0.2863

Table 2: Correlation parameters estimated by the Kriging method to approximate the
hypersurface given by 12
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Number of Inputs θ(Kriging) θ(DKG)

36 0.76655 0.9913

64 0.76655 1.3370

81 0.76655 2.7159

100 0.76655 2.5089

144 0.76655 2.8116

225 0.76655 3.5402

324 0.76655 5.8234

400 20 6.6144

529 20 8.3136

625 20 9.0773

Table 3: Correlation parameters estimated by the Kriging method and the DKG method
to approximate the hypersurface given by 19
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